Difference between revisions of "Artin–Hasse exponential"
m (fixing $p$-adic) |
m (→References: isbn link) |
||
Line 18: | Line 18: | ||
====References==== | ====References==== | ||
− | * Cassels, J.W.S. ''Local fields'' London Mathematical Society Student Texts '''3''' Cambridge University Press (1986) ISBN 0-521-31525-5 {{ZBL|0595.12006}} | + | * Cassels, J.W.S. ''Local fields'' London Mathematical Society Student Texts '''3''' Cambridge University Press (1986) {{ISBN|0-521-31525-5}} {{ZBL|0595.12006}} |
* Robert, Alain M. ''A course in ''p''-adic analysis'' Graduate Texts in Mathematics '''198''' Springer (2000) {{ZBL|0947.11035}} | * Robert, Alain M. ''A course in ''p''-adic analysis'' Graduate Texts in Mathematics '''198''' Springer (2000) {{ZBL|0947.11035}} | ||
* Schikhof, W.H. ''Ultrametric calculus. An introduction to p-adic analysis'' Cambridge Studies in Advanced Mathematics '''4''' Cambridge University Press (1984) {{ZBL|0553.26006}} | * Schikhof, W.H. ''Ultrametric calculus. An introduction to p-adic analysis'' Cambridge Studies in Advanced Mathematics '''4''' Cambridge University Press (1984) {{ZBL|0553.26006}} | ||
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 20:47, 23 November 2023
2020 Mathematics Subject Classification: Primary: 11S80 [MSN][ZBL]
A modification of the exponential function in the $p$-adic number domain. In classical analysis we have $$ \exp(z) = \prod_{n=1}^\infty \left({ 1-z^n }\right)^{-\mu(n)/n} \ , $$ which is an identity in formal power series over the rational numbers.
Over the field of $p$-adic numbers we define $$ E_p(z) = \prod_{n=1; p\not\mid n}^\infty \left({ 1-z^n }\right)^{-\mu(n)/n} \ , $$ removing the factors for which $n$ is divisible by $p$. This has radius of convergence $1$ and defines an analytic function with the property that $$ E_p(z) = \exp\left({ z + \frac{z^p}{p} + \frac{z^{p^2}}{p^2} + \cdots }\right) $$ and is given by a power series with rational $p$-integral coefficients.
References
- Cassels, J.W.S. Local fields London Mathematical Society Student Texts 3 Cambridge University Press (1986) ISBN 0-521-31525-5 Zbl 0595.12006
- Robert, Alain M. A course in p-adic analysis Graduate Texts in Mathematics 198 Springer (2000) Zbl 0947.11035
- Schikhof, W.H. Ultrametric calculus. An introduction to p-adic analysis Cambridge Studies in Advanced Mathematics 4 Cambridge University Press (1984) Zbl 0553.26006
Artin–Hasse exponential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Artin%E2%80%93Hasse_exponential&oldid=54638