Namespaces
Variants
Actions

Difference between revisions of "Artin–Hasse exponential"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (fixing $p$-adic)
m (→‎References: isbn link)
 
Line 18: Line 18:
  
 
====References====
 
====References====
* Cassels, J.W.S. ''Local fields'' London Mathematical Society Student Texts '''3''' Cambridge University Press (1986) ISBN 0-521-31525-5 {{ZBL|0595.12006}}
+
* Cassels, J.W.S. ''Local fields'' London Mathematical Society Student Texts '''3''' Cambridge University Press (1986) {{ISBN|0-521-31525-5}} {{ZBL|0595.12006}}
 
* Robert, Alain M. ''A course in ''p''-adic analysis'' Graduate Texts in Mathematics '''198''' Springer (2000) {{ZBL|0947.11035}}
 
* Robert, Alain M. ''A course in ''p''-adic analysis'' Graduate Texts in Mathematics '''198''' Springer (2000) {{ZBL|0947.11035}}
 
* Schikhof, W.H. ''Ultrametric calculus. An introduction to p-adic analysis'' Cambridge Studies in Advanced Mathematics '''4''' Cambridge University Press (1984) {{ZBL|0553.26006}}
 
* Schikhof, W.H. ''Ultrametric calculus. An introduction to p-adic analysis'' Cambridge Studies in Advanced Mathematics '''4''' Cambridge University Press (1984) {{ZBL|0553.26006}}
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 20:47, 23 November 2023

2020 Mathematics Subject Classification: Primary: 11S80 [MSN][ZBL]

A modification of the exponential function in the $p$-adic number domain. In classical analysis we have $$ \exp(z) = \prod_{n=1}^\infty \left({ 1-z^n }\right)^{-\mu(n)/n} \ , $$ which is an identity in formal power series over the rational numbers.

Over the field of $p$-adic numbers we define $$ E_p(z) = \prod_{n=1; p\not\mid n}^\infty \left({ 1-z^n }\right)^{-\mu(n)/n} \ , $$ removing the factors for which $n$ is divisible by $p$. This has radius of convergence $1$ and defines an analytic function with the property that $$ E_p(z) = \exp\left({ z + \frac{z^p}{p} + \frac{z^{p^2}}{p^2} + \cdots }\right) $$ and is given by a power series with rational $p$-integral coefficients.

References

  • Cassels, J.W.S. Local fields London Mathematical Society Student Texts 3 Cambridge University Press (1986) ISBN 0-521-31525-5 Zbl 0595.12006
  • Robert, Alain M. A course in p-adic analysis Graduate Texts in Mathematics 198 Springer (2000) Zbl 0947.11035
  • Schikhof, W.H. Ultrametric calculus. An introduction to p-adic analysis Cambridge Studies in Advanced Mathematics 4 Cambridge University Press (1984) Zbl 0553.26006
How to Cite This Entry:
Artin–Hasse exponential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Artin%E2%80%93Hasse_exponential&oldid=54638