Namespaces
Variants
Actions

Difference between revisions of "Principal filter"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Principal filter)
 
(→‎References: isbn link)
 
Line 4: Line 4:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[1]</TD> <TD valign="top">  Thomas Jech, ''Set Theory'' (3rd edition), Springer (2003) ISBN 3-540-44085-2 {{ZBL|1007.03002}}</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  Thomas Jech, ''Set Theory'' (3rd edition), Springer (2003) {{ISBN|3-540-44085-2}} {{ZBL|1007.03002}}</TD></TR>
 
</table>
 
</table>

Latest revision as of 12:00, 23 November 2023

A filter on a set $A$ consisting of all subsets of $A$ containing a given subset $X$. If $X$ is a singleton $\{x\}$ then the principal filter on $\{x\}$ is a principal ultrafilter. The Fréchet filter is an example of a non-principal filter.

References

[1] Thomas Jech, Set Theory (3rd edition), Springer (2003) ISBN 3-540-44085-2 Zbl 1007.03002
How to Cite This Entry:
Principal filter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Principal_filter&oldid=54591