Difference between revisions of "Essential submodule"
From Encyclopedia of Mathematics
(Start article: Essential submodule) |
m (→References: isbn link) |
||
Line 8: | Line 8: | ||
====References==== | ====References==== | ||
− | * F.W. Anderson, K.R. Fuller, "Rings and Categories of Modules" Graduate Texts in Mathematics '''13''' Springer (2012) ISBN 1468499130 | + | * F.W. Anderson, K.R. Fuller, "Rings and Categories of Modules" Graduate Texts in Mathematics '''13''' Springer (2012) {{ISBN|1468499130}} |
Latest revision as of 14:23, 12 November 2023
of a module $M$
A submodule $E$ of $M$ is essential it has a non-trival intersection with every non-trivial submodule of $M$: that is, $E \cap L = 0$ implies $L = 0$.
Dually, a submodule $S$ is superfluous if it is not a summand of $M$: that is, $S + L = M$ implies $L = M$.
See also: Essential subgroup.
References
- F.W. Anderson, K.R. Fuller, "Rings and Categories of Modules" Graduate Texts in Mathematics 13 Springer (2012) ISBN 1468499130
How to Cite This Entry:
Essential submodule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Essential_submodule&oldid=54405
Essential submodule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Essential_submodule&oldid=54405