Difference between revisions of "Courant-Friedrichs-Lewy condition"
(TeX) |
(gather refs) |
||
Line 3: | Line 3: | ||
$$\Omega(P)\subset\varlimsup_{h\to0}\Omega_h(P).$$ | $$\Omega(P)\subset\varlimsup_{h\to0}\Omega_h(P).$$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 13: | Line 8: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, K.O. Friedrichs, "Supersonic flow and shock waves" , Interscience (1948)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Courant, K.O. Friedrichs, H. Lewy, "On the partial difference equations of mathematical physics" , '''NYO-7689''' , Inst. Math. Sci. New York Univ. (1956) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.E. Forsythe, W.R. Wasow, "Finite difference methods for partial differential equations" , Wiley (1960)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.R. Mitchell, D.F. Griffiths, "The finite difference method in partial equations" , Wiley (1980)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.D. Richtmeyer, K.W. Morton, "Difference methods for initial value problems" , Wiley (1967)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Courant, K.O. Friedrichs, H. Lewy, "Ueber die partiellen Differenzgleichungen der mathematische Physik" ''Math Ann.'' , '''100''' (1928) pp. 32–74</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.K. Godunov, V.S. Ryaben'kii, "The theory of difference schemes" , North-Holland (1964) (Translated from Russian)</TD></TR> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, K.O. Friedrichs, "Supersonic flow and shock waves" , Interscience (1948)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Courant, K.O. Friedrichs, H. Lewy, "On the partial difference equations of mathematical physics" , '''NYO-7689''' , Inst. Math. Sci. New York Univ. (1956) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.E. Forsythe, W.R. Wasow, "Finite difference methods for partial differential equations" , Wiley (1960)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.R. Mitchell, D.F. Griffiths, "The finite difference method in partial equations" , Wiley (1980)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.D. Richtmeyer, K.W. Morton, "Difference methods for initial value problems" , Wiley (1967)</TD></TR></table> |
Latest revision as of 07:04, 27 May 2023
A necessary condition for the stability of difference schemes in the class of infinitely-differentiable coefficients. Let $\Omega(P)$ be the dependence region for the value of the solution with respect to one of the coefficients (in particular, the latter might be an initial condition) and let $\Omega_h(P)$ be the dependence region of the value $u_h(P)$ of the solution to the corresponding difference equation. A necessary condition for $u_h(P)$ to be convergent to $u(P)$ is that, as the grid spacing $h$ is diminished, the dependence region of the difference equation covers the dependence region of the differential equation, in the sense that
$$\Omega(P)\subset\varlimsup_{h\to0}\Omega_h(P).$$
Comments
The Courant–Friedrichs–Lewy condition is essential for the convergence and stability of explicit difference schemes for hyperbolic equations cf. [a1]–[a5]. Reference [a2] is the translation of [1] into English.
References
[1] | R. Courant, K.O. Friedrichs, H. Lewy, "Ueber die partiellen Differenzgleichungen der mathematische Physik" Math Ann. , 100 (1928) pp. 32–74 |
[2] | S.K. Godunov, V.S. Ryaben'kii, "The theory of difference schemes" , North-Holland (1964) (Translated from Russian) |
[a1] | R. Courant, K.O. Friedrichs, "Supersonic flow and shock waves" , Interscience (1948) |
[a2] | R. Courant, K.O. Friedrichs, H. Lewy, "On the partial difference equations of mathematical physics" , NYO-7689 , Inst. Math. Sci. New York Univ. (1956) (Translated from German) |
[a3] | G.E. Forsythe, W.R. Wasow, "Finite difference methods for partial differential equations" , Wiley (1960) |
[a4] | A.R. Mitchell, D.F. Griffiths, "The finite difference method in partial equations" , Wiley (1980) |
[a5] | R.D. Richtmeyer, K.W. Morton, "Difference methods for initial value problems" , Wiley (1967) |
Courant-Friedrichs-Lewy condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Courant-Friedrichs-Lewy_condition&oldid=53954