Namespaces
Variants
Actions

Difference between revisions of "Neyman-Pearson lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
 
Line 1: Line 1:
 
{{TEX|done}}
 
{{TEX|done}}
A lemma asserting that in the problem of statistically testing a simple hypothesis $H_0$ against a simple alternative $H_1$ the [[Likelihood-ratio test|likelihood-ratio test]] is a [[Most-powerful test|most-powerful test]] among all statistical tests having one and the same given [[Significance level|significance level]]. It was proved by J. Neyman and E.S. Pearson [[#References|[1]]]. It is often called the fundamental lemma of mathematical statistics. See also [[Statistical hypotheses, verification of|Statistical hypotheses, verification of]].
+
A lemma asserting that in the problem of statistically testing a simple hypothesis $H_0$ against a simple alternative $H_1$ the [[Likelihood-ratio test|likelihood-ratio test]] is a [[Most-powerful test|most-powerful test]] among all statistical tests having one and the same given [[Significance level|significance level]]. It was proved by [[Neyman, Jerzy|J. Neyman]] and [[Pearson, Egon Sharpe|E.S. Pearson]] [[#References|[1]]]. It is often called the fundamental lemma of mathematical statistics. See also [[Statistical hypotheses, verification of|Statistical hypotheses, verification of]].
  
 
====References====
 
====References====

Latest revision as of 07:23, 24 March 2023

A lemma asserting that in the problem of statistically testing a simple hypothesis $H_0$ against a simple alternative $H_1$ the likelihood-ratio test is a most-powerful test among all statistical tests having one and the same given significance level. It was proved by J. Neyman and E.S. Pearson [1]. It is often called the fundamental lemma of mathematical statistics. See also Statistical hypotheses, verification of.

References

[1] J. Neyman, E.S. Pearson, "On the problem of the most efficient tests of statistical hypotheses" Philos. Trans. Roy. Soc. London Ser. A. , 231 (1933) pp. 289–337
[2] E.L. Lehmann, "Statistical hypotheses testing" , Wiley (1978)
How to Cite This Entry:
Neyman-Pearson lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neyman-Pearson_lemma&oldid=53124
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article