Namespaces
Variants
Actions

Difference between revisions of "Todd class"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎References: zbl link)
 
Line 11: Line 11:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[1]</TD> <TD valign="top"> J. Todd, "The arithmetical theory of algebraic loci" ''Proc. London Math. Soc.'' , '''43''' (1937) pp. 190–225 {{ZBL| 63.0624.03}}</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top"> J. Todd, "The arithmetical theory of algebraic loci" ''Proc. London Math. Soc.'' , '''43''' (1937) pp. 190–225 {{ZBL|63.0624.03}}</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top"> F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) {{MR|1335917}} {{MR|0202713}} {{ZBL|0376.14001}} </TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top"> F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) {{MR|1335917}} {{MR|0202713}} {{ZBL|0376.14001}} </TD></TR>
 
</table>
 
</table>

Latest revision as of 07:42, 18 March 2023

2020 Mathematics Subject Classification: Primary: 57R20 [MSN][ZBL]

A characteristic class of a complex bundle $\zeta$, equal to

$$\sum_{j=0}^\infty T_j(c_1,\dots,c_j),$$

where $\{T_j\}$ is the sequence of Todd polynomials, defined by the multiplicative sequence corresponding to the power series $t/(1-e^{-t})$ and $c_i$ are the Chern classes.

Introduced by J. Todd [1].

References

[1] J. Todd, "The arithmetical theory of algebraic loci" Proc. London Math. Soc. , 43 (1937) pp. 190–225 Zbl 63.0624.03
[2] F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) MR1335917 MR0202713 Zbl 0376.14001

Comments

Cf. Characteristic class for the notion of a multiplicative sequence.

How to Cite This Entry:
Todd class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Todd_class&oldid=52868
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article