Difference between revisions of "Watson lemma"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing subscripts) |
||
Line 17: | Line 17: | ||
$$ | $$ | ||
− | f( t) \sim \sum _ { n= } | + | f( t) \sim \sum _ { n= 1} ^ \infty a _ {n} t ^ {\lambda _ {n} } , |
\ t \rightarrow 0, | \ t \rightarrow 0, | ||
$$ | $$ | ||
Line 33: | Line 33: | ||
$$ | $$ | ||
− | F( p) \sim \sum _ { n= } | + | F( p) \sim \sum _ { n= 1} ^ \infty |
\frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } | \frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } |
Latest revision as of 09:29, 22 June 2022
A result linking the asymptotic behaviour of a function near $ 0 $
with the asymptotic behaviour of its Laplace transform near $ \infty $.
Let $ f( t) $
have the asymptotic expansion
$$ f( t) \sim \sum _ { n= 1} ^ \infty a _ {n} t ^ {\lambda _ {n} } , \ t \rightarrow 0, $$
$ - 1 < \mathop{\rm Re} ( \lambda _ {1} ) < \mathop{\rm Re} ( \lambda _ {2} ) < \dots $, and let $ F $ be the Laplace transform of $ f $,
$$ F( p) = \int\limits _ { 0 } ^ \infty e ^ {- pt } f( t) dt . $$
Then $ F $ has a corresponding asymptotic expansion
$$ F( p) \sim \sum _ { n= 1} ^ \infty \frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } ,\ \ | p | \rightarrow \infty , $$
$ - \pi / 2 < \mathop{\rm arg} ( p) < \pi / 2 $.
References
[a1] | B. Davies, "Integral transforms and their applications" , Springer (1978) pp. §1.3 |
Watson lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Watson_lemma&oldid=52471