Namespaces
Variants
Actions

Difference between revisions of "Watson lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing subscripts)
 
Line 17: Line 17:
  
 
$$  
 
$$  
f( t)  \sim  \sum _ { n= } 1 ^  \infty  a _ {n} t ^ {\lambda _ {n} } ,
+
f( t)  \sim  \sum _ { n= 1} ^  \infty  a _ {n} t ^ {\lambda _ {n} } ,
 
\  t \rightarrow 0,
 
\  t \rightarrow 0,
 
$$
 
$$
Line 33: Line 33:
  
 
$$  
 
$$  
F( p)  \sim  \sum _ { n= } 1 ^  \infty   
+
F( p)  \sim  \sum _ { n= 1} ^  \infty   
  
 
\frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } }
 
\frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } }

Latest revision as of 09:29, 22 June 2022


A result linking the asymptotic behaviour of a function near $ 0 $ with the asymptotic behaviour of its Laplace transform near $ \infty $. Let $ f( t) $ have the asymptotic expansion

$$ f( t) \sim \sum _ { n= 1} ^ \infty a _ {n} t ^ {\lambda _ {n} } , \ t \rightarrow 0, $$

$ - 1 < \mathop{\rm Re} ( \lambda _ {1} ) < \mathop{\rm Re} ( \lambda _ {2} ) < \dots $, and let $ F $ be the Laplace transform of $ f $,

$$ F( p) = \int\limits _ { 0 } ^ \infty e ^ {- pt } f( t) dt . $$

Then $ F $ has a corresponding asymptotic expansion

$$ F( p) \sim \sum _ { n= 1} ^ \infty \frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } ,\ \ | p | \rightarrow \infty , $$

$ - \pi / 2 < \mathop{\rm arg} ( p) < \pi / 2 $.

References

[a1] B. Davies, "Integral transforms and their applications" , Springer (1978) pp. §1.3
How to Cite This Entry:
Watson lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Watson_lemma&oldid=52471