Namespaces
Variants
Actions

Difference between revisions of "Zero system"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing spaces)
 
Line 13: Line 13:
 
''null system''
 
''null system''
  
An involutory correlation of an  $  n $-
+
An involutory correlation of an  $  n $-dimensional projective space with an anti-symmetric operator. Suppose that the null system has the form
dimensional projective space with an anti-symmetric operator. Suppose that the null system has the form
 
  
 
$$  
 
$$  
Line 35: Line 34:
 
A null system is also called null polarity, a symplectic polarity or a symplectic correlation. As is clear from the above, it is a [[Polarity|polarity]] such that every point lies in its own polar hyperplane.
 
A null system is also called null polarity, a symplectic polarity or a symplectic correlation. As is clear from the above, it is a [[Polarity|polarity]] such that every point lies in its own polar hyperplane.
  
In projective  $  3 $-
+
In projective  $  3 $-space, a correlation is a dualizing transformation (cf. [[Correlation|Correlation]]), taking points, lines and planes into planes, lines and points, while preserving incidence in accordance with the principle of duality. If every range of points on a line is transformed into a projectively related pencil of planes through the new line, the correlation is said to be projective. There is a unique projective correlation transforming five given points, no four in a plane, into five given planes, no four through a point.
space, a correlation is a dualizing transformation (cf. [[Correlation|Correlation]]), taking points, lines and planes into planes, lines and points, while preserving incidence in accordance with the principle of duality. If every range of points on a line is transformed into a projectively related pencil of planes through the new line, the correlation is said to be projective. There is a unique projective correlation transforming five given points, no four in a plane, into five given planes, no four through a point.
 
  
 
A polarity is a projective correlation of period two (cf. [[Polarity|Polarity]]). In other words, it transforms each point  $  A $
 
A polarity is a projective correlation of period two (cf. [[Polarity|Polarity]]). In other words, it transforms each point  $  A $
Line 42: Line 40:
 
and each point of  $  \alpha $
 
and each point of  $  \alpha $
 
into a plane through  $  A $.  
 
into a plane through  $  A $.  
One kind of polarity transforms each point on a quadric surface into the tangent plane at that point. Another kind, a null polarity, transforms every point of space into a plane through that point. It may be described as the unique projective correlation that transforms five points  $  A, B, C, D, E $(
+
One kind of polarity transforms each point on a quadric surface into the tangent plane at that point. Another kind, a null polarity, transforms every point of space into a plane through that point. It may be described as the unique projective correlation that transforms five points  $  A, B, C, D, E $ (no four collinear) into the respective planes  $  EAB , ABC, BCD , CDE , DEA $.  
no four collinear) into the respective planes  $  EAB , ABC, BCD , CDE , DEA $.  
 
 
The line  $  AB $
 
The line  $  AB $
 
is self-polar, since it is the line of intersection of the polar planes  $  EAB $
 
is self-polar, since it is the line of intersection of the polar planes  $  EAB $

Latest revision as of 02:25, 16 June 2022


null system

An involutory correlation of an $ n $-dimensional projective space with an anti-symmetric operator. Suppose that the null system has the form

$$ {} ^ \prime u = Ax . $$

Then the scalar product $ {} ^ \prime ux $, which is

$$ ( x, Ax) = -( x,Ax), $$

vanishes.

References

[1] B.A. Rozenfel'd, "Multi-dimensional spaces" , Moscow (1966) (In Russian)

Comments

A null system is also called null polarity, a symplectic polarity or a symplectic correlation. As is clear from the above, it is a polarity such that every point lies in its own polar hyperplane.

In projective $ 3 $-space, a correlation is a dualizing transformation (cf. Correlation), taking points, lines and planes into planes, lines and points, while preserving incidence in accordance with the principle of duality. If every range of points on a line is transformed into a projectively related pencil of planes through the new line, the correlation is said to be projective. There is a unique projective correlation transforming five given points, no four in a plane, into five given planes, no four through a point.

A polarity is a projective correlation of period two (cf. Polarity). In other words, it transforms each point $ A $ into a plane $ \alpha $ and each point of $ \alpha $ into a plane through $ A $. One kind of polarity transforms each point on a quadric surface into the tangent plane at that point. Another kind, a null polarity, transforms every point of space into a plane through that point. It may be described as the unique projective correlation that transforms five points $ A, B, C, D, E $ (no four collinear) into the respective planes $ EAB , ABC, BCD , CDE , DEA $. The line $ AB $ is self-polar, since it is the line of intersection of the polar planes $ EAB $ and $ ABC $ of $ A $ and $ B $. In fact, all the lines through $ A $ in its polar plane $ EAB $ are self-polar: there is a flat pencil of such lines in every plane, and the set of all self-polar lines is a linear complex.

In terms of projective coordinates, a null polarity takes each point $ ( x _ {0} , x _ {1} , x _ {2} , x _ {3} ) $ to the plane $ [ X _ {0} , X _ {1} , X _ {2} , X _ {3} ] $, where

$$ X _ \mu = \sum _ {\nu = 0 } ^ { 3 } c _ {\mu \nu } x _ \nu $$

and $ c _ {\mu \nu } + c _ {\nu \mu } = 0 $ and $ c _ {01} c _ {23} + c _ {02} c _ {31} + c _ {03} c _ {12} \neq 0 $. In terms of the Plücker coordinates of a line, $ \{ p _ {01} , p _ {02} , p _ {03} , p _ {23} , p _ {31} , p _ {12} \} $, where

$$ p _ {\mu \nu } + p _ {\nu \mu } = 0 \ \ \textrm{ and } \ \ p _ {01} p _ {23} + p _ {02} p _ {31} + p _ {03} p _ {12} = 0 , $$

the linear complex of self-polar lines in the null polarity has the equation

$$ \sum \sum c _ {\mu \nu } p _ {\mu \nu } = 0. $$

References

[a1] K.G.C. von Staudt, "Beiträge zur Geometrie der Lage" , Korn , Nürnberg (1847) pp. 60–69; 190–196
[a2] H.S.M. Coxeter, "Non-Euclidean geometry" , Univ. Toronto Press (1965) pp. 65–70
[a3] D. Pedoe, "Geometry: a comprehensive course" , Dover, reprint (1988) pp. §85.5
How to Cite This Entry:
Zero system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zero_system&oldid=52442
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article