Namespaces
Variants
Actions

Difference between revisions of "Orthogonalization"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing subscripts)
Line 17: Line 17:
 
The most well-known is the Schmidt (or Gram–Schmidt) orthogonalization process, in which from a linear independent system  $  a _ {1} \dots a _ {k} $,  
 
The most well-known is the Schmidt (or Gram–Schmidt) orthogonalization process, in which from a linear independent system  $  a _ {1} \dots a _ {k} $,  
 
an orthogonal system  $  b _ {1} \dots b _ {k} $
 
an orthogonal system  $  b _ {1} \dots b _ {k} $
is constructed such that every vector  $  b _ {i} $(
+
is constructed such that every vector  $  b _ {i} $ ($  i = 1 \dots k $)  
$  i = 1 \dots k $)  
 
 
is linearly expressed in terms of  $  a _ {1} \dots a _ {i} $,  
 
is linearly expressed in terms of  $  a _ {1} \dots a _ {i} $,  
i.e.  $  b _ {i} = \sum _ {j=} 1 ^ {i} \gamma _ {ij} a _ {j} $,  
+
i.e.  $  b _ {i} = \sum _ {j= 1}  ^ {i} \gamma _ {ij} a _ {j} $,  
 
where  $  C = \| \gamma _ {ij} \| $
 
where  $  C = \| \gamma _ {ij} \| $
 
is an upper-triangular matrix. It is possible to construct the system  $  \{ b _ {i} \} $
 
is an upper-triangular matrix. It is possible to construct the system  $  \{ b _ {i} \} $
Line 34: Line 33:
  
 
$$  
 
$$  
b _ {i+} 1 =  a _ {i+} 1 + \sum _ { j= } 1 ^ { i }  \alpha _ {j} b _ {j} ,
+
b _ {i+ 1}  =  a _ {i+ 1} + \sum _ { j= 1} ^ { i }  \alpha _ {j} b _ {j} ,
 
$$
 
$$
  
Line 41: Line 40:
 
$$  
 
$$  
 
\alpha _ {j}  =  -  
 
\alpha _ {j}  =  -  
\frac{( a _ {j+} 1 , b _ {j} ) }{( b _ {j} , b _ {j} ) }
+
\frac{( a _ {j+ 1} , b _ {j} ) }{( b _ {j} , b _ {j} ) }
 
  ,
 
  ,
 
$$
 
$$
  
 
$  j = 1 \dots i $,  
 
$  j = 1 \dots i $,  
are obtained from the condition of orthogonality of the vector  $  b _ {i+} 1 $
+
are obtained from the condition of orthogonality of the vector  $  b _ {i+ 1} $
 
to  $  b _ {1} \dots b _ {i} $.  
 
to  $  b _ {1} \dots b _ {i} $.  
The geometric sense of this process comprises the fact that at every step, the vector  $  b _ {i+} 1 $
+
The geometric sense of this process comprises the fact that at every step, the vector  $  b _ {i+ 1} $
 
is perpendicular to the linear hull of  $  a _ {1} \dots a _ {i} $
 
is perpendicular to the linear hull of  $  a _ {1} \dots a _ {i} $
drawn to the end of the vector  $  a _ {i+} 1 $.  
+
drawn to the end of the vector  $  a _ {i+ 1} $.  
 
The product of the lengths  $  | b _ {1} | \dots | b _ {k} | $
 
The product of the lengths  $  | b _ {1} | \dots | b _ {k} | $
 
is equal to the volume of the parallelepiped constructed on the vectors of the system  $  \{ a _ {i} \} $
 
is equal to the volume of the parallelepiped constructed on the vectors of the system  $  \{ a _ {i} \} $
Line 62: Line 61:
  
 
\begin{array}{llll}
 
\begin{array}{llll}
( a _ {1} , a _ {1} )  &\dots  &( a _ {1} , a _ {i-} 1 )  &a _ {1}  \\
+
( a _ {1} , a _ {1} )  &\dots  &( a _ {1} , a _ {i- 1} )  &a _ {1}  \\
 
\dots  &\dots  &\dots  &{}  \\
 
\dots  &\dots  &\dots  &{}  \\
( a _ {i} , a _ {1} )  &\dots  &( a _ {i} , a _ {i-} 1 )  &a _ {i}  \\
+
( a _ {i} , a _ {1} )  &\dots  &( a _ {i} , a _ {i- 1} )  &a _ {i}  \\
 
\end{array}
 
\end{array}
 
  \right |
 
  \right |
Line 71: Line 70:
 
where  $$  
 
where  $$  
 
q _ {i}  =   
 
q _ {i}  =   
\frac{b _ {i} }{\sqrt {G _ {i-} 1 G _ {i} } }
+
\frac{b _ {i} }{\sqrt {G _ {i- 1} G _ {i} } }
 
  ,
 
  ,
 
$$
 
$$

Revision as of 08:21, 13 May 2022


orthogonalization process

An algorithm to construct for a given linear independent system of vectors in a Euclidean or Hermitian space $ V $ an orthogonal system of non-zero vectors generating the same subspace in $ V $. The most well-known is the Schmidt (or Gram–Schmidt) orthogonalization process, in which from a linear independent system $ a _ {1} \dots a _ {k} $, an orthogonal system $ b _ {1} \dots b _ {k} $ is constructed such that every vector $ b _ {i} $ ($ i = 1 \dots k $) is linearly expressed in terms of $ a _ {1} \dots a _ {i} $, i.e. $ b _ {i} = \sum _ {j= 1} ^ {i} \gamma _ {ij} a _ {j} $, where $ C = \| \gamma _ {ij} \| $ is an upper-triangular matrix. It is possible to construct the system $ \{ b _ {i} \} $ such that it is orthonormal and such that the diagonal entries $ \gamma _ {ii} $ of $ C $ are positive; the system $ \{ b _ {i} \} $ and the matrix $ C $ are defined uniquely by these conditions.

The Gram–Schmidt process is as follows. Put $ b _ {1} = a _ {1} $; if the vectors $ b _ {1} \dots b _ {i} $ have already been constructed, then

$$ b _ {i+ 1} = a _ {i+ 1} + \sum _ { j= 1} ^ { i } \alpha _ {j} b _ {j} , $$

where

$$ \alpha _ {j} = - \frac{( a _ {j+ 1} , b _ {j} ) }{( b _ {j} , b _ {j} ) } , $$

$ j = 1 \dots i $, are obtained from the condition of orthogonality of the vector $ b _ {i+ 1} $ to $ b _ {1} \dots b _ {i} $. The geometric sense of this process comprises the fact that at every step, the vector $ b _ {i+ 1} $ is perpendicular to the linear hull of $ a _ {1} \dots a _ {i} $ drawn to the end of the vector $ a _ {i+ 1} $. The product of the lengths $ | b _ {1} | \dots | b _ {k} | $ is equal to the volume of the parallelepiped constructed on the vectors of the system $ \{ a _ {i} \} $ as edges. By normalizing the vectors $ b _ {i} $, the required orthonormal system is obtained. An explicit expression of the vectors $ b _ {i} $ in terms of $ a _ {1} \dots a _ {k} $ is given by the formula

$$ b _ {i} = \left | \begin{array}{llll} ( a _ {1} , a _ {1} ) &\dots &( a _ {1} , a _ {i- 1} ) &a _ {1} \\ \dots &\dots &\dots &{} \\ ( a _ {i} , a _ {1} ) &\dots &( a _ {i} , a _ {i- 1} ) &a _ {i} \\ \end{array} \right | $$

where $$ q _ {i} = \frac{b _ {i} }{\sqrt {G _ {i- 1} G _ {i} } } , $$ is the Gram determinant of the system $ G _ {i} $, with G0=1 by definition. (The determinant at the right-hand side has to be formally expanded by the last column).

The norm of these orthogonal vectors is given by ||bi||=SQRT(Gi/Gi-1). Thus, the corresponding orthonormal system takes the form

$ a _ {1} \dots a _ {i} $

This process can also be used for a countable system of vectors.

The Gram–Schmidt process can be interpreted as expansion of a non-singular square matrix in the product of an orthogonal (or unitary, in the case of a Hermitian space) and an upper-triangular matrix with positive diagonal entries, this product being a particular example of an Iwasawa decomposition.

References

[1] F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian)
[2] A.G. Kurosh, "Higher algebra" , MIR (1972) (Translated from Russian)
How to Cite This Entry:
Orthogonalization. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonalization&oldid=52367
This article was adapted from an original article by I.V. Proskuryakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article