Namespaces
Variants
Actions

Difference between revisions of "Periodogram"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing subscripts)
Line 22: Line 22:
 
I _ {N} ( \lambda )  =   
 
I _ {N} ( \lambda )  =   
 
\frac{1}{2 \pi N }
 
\frac{1}{2 \pi N }
  | d _ {N}  ^ {(} X) ( \lambda ) |  ^ {2} ,
+
  | d _ {N}  ^ {( X)} ( \lambda ) |  ^ {2} ,
 
$$
 
$$
  
Line 28: Line 28:
  
 
$$  
 
$$  
d _ {N}  ^ {(} X) ( \lambda )  =  \sum _ { t= } 1 ^ { N }  \mathop{\rm exp} \{ - it \lambda \} X( t).
+
d _ {N}  ^ {( X)} ( \lambda )  =  \sum _ { t= 1} ^ { N }  \mathop{\rm exp} \{ - it \lambda \} X( t).
 
$$
 
$$
  
Line 45: Line 45:
 
\frac{\sin  ^ {2}  N
 
\frac{\sin  ^ {2}  N
 
\lambda /2 }{\sin  ^ {2}  \lambda /2 }
 
\lambda /2 }{\sin  ^ {2}  \lambda /2 }
  c  ^ {2} + O( N  ^ {-} 1 ).
+
  c  ^ {2} + O( N  ^ {- 1} ).
 
$$
 
$$
  
Line 52: Line 52:
 
with the result that averaging  $  I _ {N} ( x) $
 
with the result that averaging  $  I _ {N} ( x) $
 
with respect to frequencies close to  $  \lambda $
 
with respect to frequencies close to  $  \lambda $
may lead to an asymptotically-consistent estimator. In the case of an  $  n $-
+
may lead to an asymptotically-consistent estimator. In the case of an  $  n $-dimensional stochastic process  $  X( t) = \{ X _ {k} ( t) \} _ {k= 1}  ^ {n} $,  
dimensional stochastic process  $  X( t) = \{ X _ {k} ( t) \} _ {k=} 1 ^ {n} $,  
 
 
the matrix periodogram  $  I _ {N} ( \lambda ) $
 
the matrix periodogram  $  I _ {N} ( \lambda ) $
 
is determined by its elements
 
is determined by its elements
Line 71: Line 70:
 
I _ {N} ^ {( k _ {1} \dots k _ {m} ) }
 
I _ {N} ^ {( k _ {1} \dots k _ {m} ) }
 
( \lambda _ {1} \dots \lambda _ {m} )  =   
 
( \lambda _ {1} \dots \lambda _ {m} )  =   
\frac{1}{( 2 \pi )  ^ {m-} 1 N }
+
\frac{1}{( 2 \pi )  ^ {m- 1 }N }
  \prod _ { j= } 1 ^ { m }  
+
  \prod _ { j= 1 }^ { m }  
 
d _ {N} ^ {X _ {k _ {j}  } } ( \lambda _ {j} ),
 
d _ {N} ^ {X _ {k _ {j}  } } ( \lambda _ {j} ),
 
$$
 
$$
  
which is used in constructing  $  m $-
+
which is used in constructing  $  m $-th order estimators of the spectral density (see [[Spectral semi-invariant|Spectral semi-invariant]]).
th order estimators of the spectral density (see [[Spectral semi-invariant|Spectral semi-invariant]]).
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.R. Brillinger,  "Time series. Data analysis and theory" , Holt, Rinehart &amp; Winston  (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.J. Hannan,  "Multiple time series" , Wiley  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.R. Brillinger,  "Time series. Data analysis and theory" , Holt, Rinehart &amp; Winston  (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.J. Hannan,  "Multiple time series" , Wiley  (1970)</TD></TR></table>

Revision as of 08:56, 25 April 2022


A function $ I _ {N} ( \lambda ) $, $ - \infty < \lambda < \infty $, with $ N $ a positive integer, defined on a sample $ X( 1) \dots X( N) $ of a stationary stochastic process $ X( t) $, $ t = 0, \pm 1 \dots $ as follows:

$$ I _ {N} ( \lambda ) = \frac{1}{2 \pi N } | d _ {N} ^ {( X)} ( \lambda ) | ^ {2} , $$

where

$$ d _ {N} ^ {( X)} ( \lambda ) = \sum _ { t= 1} ^ { N } \mathop{\rm exp} \{ - it \lambda \} X( t). $$

A periodogram is a function that is periodic in $ \lambda $ with period $ 2 \pi $. The differentiable spectral density $ f( \lambda ) $ of the stationary process $ X( t) $ with mean $ c = {\mathsf E} X( t) $ can be estimated by means of the periodogram for $ \lambda \neq 0 $ $ ( \mathop{\rm mod} 2 \pi ) $:

$$ {\mathsf E} I _ {N} ( \lambda ) = f( \lambda ) + \frac{1}{2 \pi N } \frac{\sin ^ {2} N \lambda /2 }{\sin ^ {2} \lambda /2 } c ^ {2} + O( N ^ {- 1} ). $$

At the same time, the periodogram is not a consistent estimator for $ f( \lambda ) $( cf. [1]). Consistent estimators of the spectral density (cf. Spectral density, estimator of the) can be obtained by some further constructions that employ the asymptotic lack of correlation for the periodograms for different frequencies $ \lambda _ {1} \neq \lambda _ {2} $, with the result that averaging $ I _ {N} ( x) $ with respect to frequencies close to $ \lambda $ may lead to an asymptotically-consistent estimator. In the case of an $ n $-dimensional stochastic process $ X( t) = \{ X _ {k} ( t) \} _ {k= 1} ^ {n} $, the matrix periodogram $ I _ {N} ( \lambda ) $ is determined by its elements

$$ I _ {N} ^ {( i, j) } ( \lambda ) = \ \frac{1}{2 \pi N } d _ {N} ^ {X _ {i} } ( \lambda ) {d _ {N} ^ {X _ {j} } ( \lambda ) } bar . $$

Along with $ I _ {N} ( \lambda ) $, which is also called a second-order periodogram, one sometimes also considers the periodogram of order $ m $:

$$ I _ {N} ^ {( k _ {1} \dots k _ {m} ) } ( \lambda _ {1} \dots \lambda _ {m} ) = \frac{1}{( 2 \pi ) ^ {m- 1 }N } \prod _ { j= 1 }^ { m } d _ {N} ^ {X _ {k _ {j} } } ( \lambda _ {j} ), $$

which is used in constructing $ m $-th order estimators of the spectral density (see Spectral semi-invariant).

References

[1] D.R. Brillinger, "Time series. Data analysis and theory" , Holt, Rinehart & Winston (1974)
[2] E.J. Hannan, "Multiple time series" , Wiley (1970)
How to Cite This Entry:
Periodogram. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Periodogram&oldid=52288
This article was adapted from an original article by I.G. Zhurbenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article