Difference between revisions of "Mean curvature"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing superscripts) |
||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | ''of a surface $ \Phi ^ {2} $ | + | ''of a surface $ \Phi ^ {2} $ in $ 3 $-dimensional Euclidean space $ \mathbf R ^ {3} $'' |
− | in $ 3 $- | ||
− | dimensional Euclidean space $ \mathbf R ^ {3} $'' | ||
Half of the sum of the principal curvatures (cf. [[Principal curvature|Principal curvature]]) $ k _ {1} $ | Half of the sum of the principal curvatures (cf. [[Principal curvature|Principal curvature]]) $ k _ {1} $ | ||
Line 27: | Line 25: | ||
For a hypersurface $ \Phi ^ {n} $ | For a hypersurface $ \Phi ^ {n} $ | ||
− | in the Euclidean space $ \mathbf R ^ {n+} | + | in the Euclidean space $ \mathbf R ^ {n+1} $, |
this formula is generalized in the following way: | this formula is generalized in the following way: | ||
Line 90: | Line 88: | ||
which is generalized for a hypersurface $ \Phi ^ {n} $ | which is generalized for a hypersurface $ \Phi ^ {n} $ | ||
− | in $ \mathbf R ^ {n+} | + | in $ \mathbf R ^ {n+1} $, |
− | defined by the equation $ x _ {n+} | + | defined by the equation $ x _ {n+1} = f( x _ {1} \dots x _ {n} ) $, |
as follows: | as follows: | ||
$$ | $$ | ||
H ( A) = | H ( A) = | ||
− | \frac{\sum _ { i= } | + | \frac{\sum _ { i= 1} ^ { n } \left ( 1 + p ^ {2} - \left ( |
\frac{\partial | \frac{\partial | ||
f }{\partial x _ {i} } | f }{\partial x _ {i} } | ||
\right ) ^ {2} \right ) | \right ) ^ {2} \right ) | ||
\frac{\partial ^ {2} f }{\partial x _ {i} ^ {2} } | \frac{\partial ^ {2} f }{\partial x _ {i} ^ {2} } | ||
− | - \sum _ { i,j= } | + | - \sum _ { i,j= 1} ^ { n } |
\frac{\partial f | \frac{\partial f | ||
}{\partial x _ {i} } | }{\partial x _ {i} } | ||
Line 126: | Line 124: | ||
====Comments==== | ====Comments==== | ||
− | For an $ m $- | + | For an $ m $-dimensional submanifold $ M $ |
− | dimensional submanifold $ M $ | + | of an $ n $-dimensional Euclidean space of codimension $ n - m > 1 $, |
− | of an $ n $- | ||
− | dimensional Euclidean space of codimension $ n - m > 1 $, | ||
the mean curvature generalizes to the notion of the mean curvature normal | the mean curvature generalizes to the notion of the mean curvature normal | ||
Line 135: | Line 131: | ||
\nu _ {p} = | \nu _ {p} = | ||
\frac{1}{m} | \frac{1}{m} | ||
− | \sum _ { j= } | + | \sum _ { j= 1} ^ { n- m} [ \mathop{\rm Tr} A |
( e _ {j} ) ] e _ {j} , | ( e _ {j} ) ] e _ {j} , | ||
$$ | $$ | ||
− | where $ e _ {1} \dots e _ {n-} | + | where $ e _ {1} \dots e _ {n-m} $ |
is an orthonormal frame of the normal space (cf. [[Normal space (to a surface)|Normal space (to a surface)]]) of $ M $ | is an orthonormal frame of the normal space (cf. [[Normal space (to a surface)|Normal space (to a surface)]]) of $ M $ | ||
at $ p $ | at $ p $ | ||
− | and $ A ( e _ {j} ) : T _ {p} M \rightarrow T _ {p} M $( | + | and $ A ( e _ {j} ) : T _ {p} M \rightarrow T _ {p} M $ ($ T _ {p} M $ |
− | $ T _ {p} M $ | ||
denotes the tangent space to $ M $ | denotes the tangent space to $ M $ | ||
at $ p $) | at $ p $) |
Latest revision as of 03:50, 21 March 2022
of a surface $ \Phi ^ {2} $ in $ 3 $-dimensional Euclidean space $ \mathbf R ^ {3} $
Half of the sum of the principal curvatures (cf. Principal curvature) $ k _ {1} $ and $ k _ {2} $, calculated at a point $ A $ of this surface:
$$ H( A) = \frac{k _ {1} + k _ {2} }{2} . $$
For a hypersurface $ \Phi ^ {n} $ in the Euclidean space $ \mathbf R ^ {n+1} $, this formula is generalized in the following way:
$$ H( A) = \frac{k _ {1} + \dots + k _ {n} }{n} , $$
where $ k _ {i} $, $ i = 1 \dots n $, are the principal curvatures of the hypersurface, calculated at a point $ A \in \Phi ^ {n} $.
The mean curvature of a surface in $ \mathbf R ^ {3} $ can be expressed by means of the coefficients of the first and second fundamental forms of this surface:
$$ H( A) = \frac{1}{2} \frac{LG - 2MF + NE }{EG - F ^ { 2 } } , $$
where $ E, F, G $ are the coefficients of the first fundamental form, and $ L, M, N $ are the coefficients of the second fundamental form, calculated at a point $ A \in \Phi ^ {2} $. In the particular case where the surface is defined by an equation $ z = f( x, y) $, the mean curvature is calculated using the formula:
$$ H ( A) = $$
$$ = \ \frac{\left ( 1 + \left ( \frac{\partial f }{\partial y } \right ) ^ {2} \right ) \frac{\partial ^ {2} f }{\partial x ^ {2} } - 2 \frac{\partial f }{\partial x } \frac{\partial f }{\partial y } \frac{\partial ^ {2} f }{\partial x \partial y } + \left ( 1 + \left ( \frac{\partial f }{ \partial x } \right ) ^ {2} \right ) \frac{\partial ^ {2} f }{\partial y ^ {2} } }{\left ( 1 + \left ( \frac{\partial f }{\partial x } \right ) ^ {2} + \left ( \frac{\partial f }{\partial y } \right ) ^ {2} \right ) ^ {3/2} } , $$
which is generalized for a hypersurface $ \Phi ^ {n} $ in $ \mathbf R ^ {n+1} $, defined by the equation $ x _ {n+1} = f( x _ {1} \dots x _ {n} ) $, as follows:
$$ H ( A) = \frac{\sum _ { i= 1} ^ { n } \left ( 1 + p ^ {2} - \left ( \frac{\partial f }{\partial x _ {i} } \right ) ^ {2} \right ) \frac{\partial ^ {2} f }{\partial x _ {i} ^ {2} } - \sum _ { i,j= 1} ^ { n } \frac{\partial f }{\partial x _ {i} } \frac{\partial f }{\partial x _ {j} } \frac{ \partial ^ {2} f }{\partial x _ {i} \partial x _ {j} } }{( 1 + p ^ {2} ) ^ {3/2} } , $$
where
$$ p ^ {2} = | \mathop{\rm grad} f | ^ {2} = \ \left ( \frac{\partial f }{\partial x _ {1} } \right ) ^ {2} + \dots + \left ( \frac{\partial f }{\partial x _ {n} } \right ) ^ {2} . $$
Comments
For an $ m $-dimensional submanifold $ M $ of an $ n $-dimensional Euclidean space of codimension $ n - m > 1 $, the mean curvature generalizes to the notion of the mean curvature normal
$$ \nu _ {p} = \frac{1}{m} \sum _ { j= 1} ^ { n- m} [ \mathop{\rm Tr} A ( e _ {j} ) ] e _ {j} , $$
where $ e _ {1} \dots e _ {n-m} $ is an orthonormal frame of the normal space (cf. Normal space (to a surface)) of $ M $ at $ p $ and $ A ( e _ {j} ) : T _ {p} M \rightarrow T _ {p} M $ ($ T _ {p} M $ denotes the tangent space to $ M $ at $ p $) is the shape operator of $ M $ at $ p $ in the direction $ e _ {j} $, which is related to the second fundamental tensor $ V $ of $ M $ at $ p $ by $ \langle A ( e _ {j} ) ( X) , Y \rangle = \langle V ( X , Y ) , e _ {j} \rangle $.
References
[a1] | M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French) |
[a2] | M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) |
[a3] | W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973) |
[a4] | B.-Y. Chen, "Geometry of submanifolds" , M. Dekker (1973) |
Mean curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mean_curvature&oldid=52238