Namespaces
Variants
Actions

Difference between revisions of "Affine morphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing spaces)
Line 19: Line 19:
 
Let  $  S $
 
Let  $  S $
 
be a scheme, let  $  A $
 
be a scheme, let  $  A $
be a quasi-coherent sheaf of  $  {\mathcal O} _ {S} $-
+
be a quasi-coherent sheaf of  $  {\mathcal O} _ {S} $-algebras and let  $  U _ {i} $
algebras and let  $  U _ {i} $
 
 
be open affine subschemes in  $  S $
 
be open affine subschemes in  $  S $
 
which form a covering of  $  S $.  
 
which form a covering of  $  S $.  
 
Then the glueing of the affine schemes  $  { \mathop{\rm Spec} }  \Gamma (U _ {i} , A) $
 
Then the glueing of the affine schemes  $  { \mathop{\rm Spec} }  \Gamma (U _ {i} , A) $
determines an affine  $  S $-
+
determines an affine  $  S $-scheme, denoted by  $  { \mathop{\rm Spec} }  A $.  
scheme, denoted by  $  { \mathop{\rm Spec} }  A $.  
+
Conversely, any affine  $  S $-scheme definable by an affine morphism  $  f:  X \rightarrow S $
Conversely, any affine  $  S $-
 
scheme definable by an affine morphism  $  f:  X \rightarrow S $
 
 
is isomorphic (as a scheme over  $  S $)  
 
is isomorphic (as a scheme over  $  S $)  
 
to the scheme  $  { \mathop{\rm Spec} }  f _ {*} ( {\mathcal O} _ {X} ) $.  
 
to the scheme  $  { \mathop{\rm Spec} }  f _ {*} ( {\mathcal O} _ {X} ) $.  
The set of  $  S $-
+
The set of  $  S $-morphisms of an  $  S $-scheme  $  f:  Z \rightarrow S $
morphisms of an  $  S $-
+
into the affine  $  S $-scheme  $  { \mathop{\rm Spec} }  A $
scheme  $  f:  Z \rightarrow S $
+
is in bijective correspondence with the homomorphisms of the sheaves of  $  {\mathcal O} _ {S} $-algebras  $  A \rightarrow f _ {*} ( {\mathcal O} _ {Z} ) $.
into the affine  $  S $-
 
scheme  $  { \mathop{\rm Spec} }  A $
 
is in bijective correspondence with the homomorphisms of the sheaves of  $  {\mathcal O} _ {S} $-
 
algebras  $  A \rightarrow f _ {*} ( {\mathcal O} _ {Z} ) $.
 
  
 
Closed imbeddings of schemes or arbitrary morphisms of affine schemes are affine morphisms; other examples of affine morphisms are entire morphisms and finite morphisms. Thus the morphism of normalization of a scheme is an affine morphism. Under composition and base change the property of a morphism to be an affine morphism is preserved.
 
Closed imbeddings of schemes or arbitrary morphisms of affine schemes are affine morphisms; other examples of affine morphisms are entire morphisms and finite morphisms. Thus the morphism of normalization of a scheme is an affine morphism. Under composition and base change the property of a morphism to be an affine morphism is preserved.

Revision as of 05:59, 19 March 2022


A morphism of schemes $ f: X \rightarrow S $ such that the pre-image of any open affine subscheme in $ S $ is an affine scheme. The scheme $ X $ is called an affine $ S $- scheme.

Let $ S $ be a scheme, let $ A $ be a quasi-coherent sheaf of $ {\mathcal O} _ {S} $-algebras and let $ U _ {i} $ be open affine subschemes in $ S $ which form a covering of $ S $. Then the glueing of the affine schemes $ { \mathop{\rm Spec} } \Gamma (U _ {i} , A) $ determines an affine $ S $-scheme, denoted by $ { \mathop{\rm Spec} } A $. Conversely, any affine $ S $-scheme definable by an affine morphism $ f: X \rightarrow S $ is isomorphic (as a scheme over $ S $) to the scheme $ { \mathop{\rm Spec} } f _ {*} ( {\mathcal O} _ {X} ) $. The set of $ S $-morphisms of an $ S $-scheme $ f: Z \rightarrow S $ into the affine $ S $-scheme $ { \mathop{\rm Spec} } A $ is in bijective correspondence with the homomorphisms of the sheaves of $ {\mathcal O} _ {S} $-algebras $ A \rightarrow f _ {*} ( {\mathcal O} _ {Z} ) $.

Closed imbeddings of schemes or arbitrary morphisms of affine schemes are affine morphisms; other examples of affine morphisms are entire morphisms and finite morphisms. Thus the morphism of normalization of a scheme is an affine morphism. Under composition and base change the property of a morphism to be an affine morphism is preserved.

References

[1] A. Grothendieck, "The cohomology theory of abstract algebraic varieties" , Proc. Internat. Math. Congress Edinburgh, 1958 , Cambridge Univ. Press (1960) pp. 103–118 MR0130879 Zbl 0119.36902
[2] J. Dieudonné, A. Grothendieck, "Elements de géometrie algébrique" Publ. Math. IHES , 4 (1960) MR0217083 MR0163908 Zbl 0203.23301 Zbl 0136.15901

Comments

$ f : X \rightarrow S $ is a finite morphism if there exist a covering $ ( S _ \alpha ) $ of $ S $ by affine open subschemes such that $ f ^ {-1} ( S _ \alpha ) $ is affine for all $ \alpha $ and such that the ring $ B _ \alpha $ of $ f ^ {-1} ( S _ \alpha ) $ is finitely generated as a module over the ring $ A _ \alpha $ of $ S _ \alpha $. The morphism is entire if $ B _ \alpha $ is entire over $ A _ \alpha $, i.e. if every $ x \in B _ \alpha $ integral over $ A _ \alpha $, which means that it is a root of a monic polynomial with coefficients in $ A _ \alpha $, or, equivalently, if for each $ x \in B _ \alpha $ the module $ A _ \alpha [ x ] $ is a finitely-generated module over $ A _ \alpha $.

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001
How to Cite This Entry:
Affine morphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_morphism&oldid=52227
This article was adapted from an original article by V.I. DanilovI.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article