Namespaces
Variants
Actions

Difference between revisions of "Poincaré duality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing superscripts)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
An isomorphism between the  $  p $-
+
An isomorphism between the  $  p $-dimensional homology groups (or modules) of an  $  n $-dimensional manifold  $  M $ (including a generalized manifold) with coefficients in a locally constant system of groups (modules)  $  {\mathcal G} $,  
dimensional homology groups (or modules) of an  $  n $-
 
dimensional manifold  $  M $(
 
including a generalized manifold) with coefficients in a locally constant system of groups (modules)  $  {\mathcal G} $,  
 
 
each isomorphic to  $  G $,  
 
each isomorphic to  $  G $,  
and the  $  ( n - p ) $-
+
and the  $  ( n - p ) $-dimensional cohomology groups of  $  M $
dimensional cohomology groups of  $  M $
 
 
with coefficients in an orientation sheaf  $  {\mathcal H} _ {n} ( {\mathcal G} ) $
 
with coefficients in an orientation sheaf  $  {\mathcal H} _ {n} ( {\mathcal G} ) $
over  $  M $(
+
over  $  M $ (the stalk of this sheaf at the point  $  x \in M $
the stalk of this sheaf at the point  $  x \in M $
 
 
is the local homology group  $  H _ {n}  ^ {x} = H _ {n} ( M , M \setminus  x;  {\mathcal G} ) $).  
 
is the local homology group  $  H _ {n}  ^ {x} = H _ {n} ( M , M \setminus  x;  {\mathcal G} ) $).  
 
More exactly, the usual homology groups  $  H _ {p}  ^ {c} ( M ;  {\mathcal G} ) $
 
More exactly, the usual homology groups  $  H _ {p}  ^ {c} ( M ;  {\mathcal G} ) $
 
are isomorphic to the cohomology groups  $  H _ {c}  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $,  
 
are isomorphic to the cohomology groups  $  H _ {c}  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $,  
 
$  q = n - p $,  
 
$  q = n - p $,  
with compact support (cohomology groups  "of the second kind" ), while the homology groups  "of the second kind"  $  H _ {p} ( M ;  {\mathcal G} ) $(
+
with compact support (cohomology groups  "of the second kind" ), while the homology groups  "of the second kind"  $  H _ {p} ( M ;  {\mathcal G} ) $ (determined by  "infinite"  chains) are isomorphic to the usual cohomology groups  $  H  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $.  
determined by  "infinite"  chains) are isomorphic to the usual cohomology groups  $  H  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $.  
 
 
In a more general form there are isomorphisms  $  H _ {p}  ^  \Phi  ( M ;  {\mathcal G} ) = H _  \Phi  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $,  
 
In a more general form there are isomorphisms  $  H _ {p}  ^  \Phi  ( M ;  {\mathcal G} ) = H _  \Phi  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $,  
 
where  $  \Phi $
 
where  $  \Phi $
Line 32: Line 26:
  
 
There are also analogous identifications between the homology and the cohomology of subsets  $  A \subset  M $
 
There are also analogous identifications between the homology and the cohomology of subsets  $  A \subset  M $
and pairs  $  ( M , A ) $(
+
and pairs  $  ( M , A ) $ (Poincaré–Lefschetz duality). Namely, let  $  A $
Poincaré–Lefschetz duality). Namely, let  $  A $
 
 
be an open or closed subspace in  $  M $
 
be an open or closed subspace in  $  M $
 
and let  $  B = M \setminus  A $.  
 
and let  $  B = M \setminus  A $.  
Line 52: Line 45:
 
$$  
 
$$  
 
\rightarrow \  
 
\rightarrow \  
H _ {p-} 1 ^ {\Phi \mid  B } ( B ;  {\mathcal G} )  \rightarrow \dots ,
+
H _ {p-1} ^ {\Phi \mid  B } ( B ;  {\mathcal G} )  \rightarrow \dots ,
 
$$
 
$$
  
Line 65: Line 58:
 
\rightarrow \  
 
\rightarrow \  
 
H _ {\Phi \cap A }  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} ))  \rightarrow \  
 
H _ {\Phi \cap A }  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} ))  \rightarrow \  
H _  \Phi  ^ {q+} 1 ( M ;  A ;  {\mathcal H} _ {n} ( {\mathcal G} ))  \rightarrow \dots .
+
H _  \Phi  ^ {q+1} ( M ;  A ;  {\mathcal H} _ {n} ( {\mathcal G} ))  \rightarrow \dots .
 
$$
 
$$
  
Line 110: Line 103:
 
but  $  A $
 
but  $  A $
 
is open, then the cohomology groups  $  H _ {c \cap A }  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} )) $
 
is open, then the cohomology groups  $  H _ {c \cap A }  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} )) $
are not the same as  $  H _ {c}  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} )) $(
+
are not the same as  $  H _ {c}  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} )) $ (and depend on the inclusion  $  A \subset  M $).
and depend on the inclusion  $  A \subset  M $).
 
  
 
Poincaré–Lefschetz duality can easily be applied to describe a duality between the homology and the cohomology of a manifold with boundary. It is useful to bear in mind that, if all the non-zero stalks of the sheaf  $  {\mathcal H} _ {n} ( R) $
 
Poincaré–Lefschetz duality can easily be applied to describe a duality between the homology and the cohomology of a manifold with boundary. It is useful to bear in mind that, if all the non-zero stalks of the sheaf  $  {\mathcal H} _ {n} ( R) $
Line 135: Line 127:
 
be a compact orientable manifold (cf. [[Orientation|Orientation]]) and  $  c _ {M} \in H _ {n} ( M;  \mathbf Z ) $
 
be a compact orientable manifold (cf. [[Orientation|Orientation]]) and  $  c _ {M} \in H _ {n} ( M;  \mathbf Z ) $
 
a fundamental class. Then the cap product with  $  c _ {M} $
 
a fundamental class. Then the cap product with  $  c _ {M} $
induces an isomorphism  $  H  ^ {i} ( M ;  G) \rightarrow H _ {n-} i ( M ;  G) $,  
+
induces an isomorphism  $  H  ^ {i} ( M ;  G) \rightarrow H _ {n-i} ( M ;  G) $,  
cf. [[#References|[a1]]]. A formulation using the slant product with an orientation class is given in [[#References|[a2]]]. Poincaré duality (for de Rham cohomology) can also be seen as coming from the natural pairing  $  H  ^ {q} ( M) \otimes H _ {c}  ^ {n-} q ( M) \rightarrow \mathbf R $
+
cf. [[#References|[a1]]]. A formulation using the slant product with an orientation class is given in [[#References|[a2]]]. Poincaré duality (for de Rham cohomology) can also be seen as coming from the natural pairing  $  H  ^ {q} ( M) \otimes H _ {c}  ^ {n-q} ( M) \rightarrow \mathbf R $
given by taking the wedge product of two differential forms followed by integration (with respect to a chosen volume form), giving  $  H  ^ {q} ( M) \simeq H _ {c}  ^ {n-} q ( M)  ^ {*} $,  
+
given by taking the wedge product of two differential forms followed by integration (with respect to a chosen volume form), giving  $  H  ^ {q} ( M) \simeq H _ {c}  ^ {n-q} ( M)  ^ {*} $,  
 
cf. [[#References|[a3]]]. For Poincaré duality in the case of generalized cohomology theories defined by a spectrum  $  E $,  
 
cf. [[#References|[a3]]]. For Poincaré duality in the case of generalized cohomology theories defined by a spectrum  $  E $,  
 
see [[#References|[a4]]].
 
see [[#References|[a4]]].

Latest revision as of 05:06, 7 March 2022


An isomorphism between the $ p $-dimensional homology groups (or modules) of an $ n $-dimensional manifold $ M $ (including a generalized manifold) with coefficients in a locally constant system of groups (modules) $ {\mathcal G} $, each isomorphic to $ G $, and the $ ( n - p ) $-dimensional cohomology groups of $ M $ with coefficients in an orientation sheaf $ {\mathcal H} _ {n} ( {\mathcal G} ) $ over $ M $ (the stalk of this sheaf at the point $ x \in M $ is the local homology group $ H _ {n} ^ {x} = H _ {n} ( M , M \setminus x; {\mathcal G} ) $). More exactly, the usual homology groups $ H _ {p} ^ {c} ( M ; {\mathcal G} ) $ are isomorphic to the cohomology groups $ H _ {c} ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $, $ q = n - p $, with compact support (cohomology groups "of the second kind" ), while the homology groups "of the second kind" $ H _ {p} ( M ; {\mathcal G} ) $ (determined by "infinite" chains) are isomorphic to the usual cohomology groups $ H ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $. In a more general form there are isomorphisms $ H _ {p} ^ \Phi ( M ; {\mathcal G} ) = H _ \Phi ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $, where $ \Phi $ is any family of supports.

There are also analogous identifications between the homology and the cohomology of subsets $ A \subset M $ and pairs $ ( M , A ) $ (Poincaré–Lefschetz duality). Namely, let $ A $ be an open or closed subspace in $ M $ and let $ B = M \setminus A $. Let $ \Phi \mid B $ be the family of all those sets in $ \Phi $ which are contained in $ B $ and let $ \Phi \cap A $ be the family of sets of the form $ F \cap A $, $ F \in \Phi $. Then the exact homology sequence of the pair $ ( M , B ) $,

$$ \tag{* } \dots \rightarrow H _ {p} ^ {\Phi \mid B } ( B ; {\mathcal G} ) \ \rightarrow H _ {p} ^ \Phi ( M ; {\mathcal G} ) \rightarrow \ H _ {p} ^ \phi ( M ; B ; {\mathcal G} ) \rightarrow $$

$$ \rightarrow \ H _ {p-1} ^ {\Phi \mid B } ( B ; {\mathcal G} ) \rightarrow \dots , $$

coincides with the cohomology sequence of the pair $ ( M , A ) $,

$$ \dots \rightarrow H _ \Phi ^ {q} ( M , A ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \ H _ \Phi ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow $$

$$ \rightarrow \ H _ {\Phi \cap A } ^ {q} ( A ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \ H _ \Phi ^ {q+1} ( M ; A ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \dots . $$

The groups $ H _ {p} ^ {\Phi \mid B } ( B ; {\mathcal G} ) = H _ {p} ^ {\Phi \mid B } ( M ; {\mathcal G} ) $ coincide with $ H _ {p} ^ {c} ( B ; {\mathcal G} ) $ when $ \Phi = c $, and with $ H _ {p} ( B ; {\mathcal G} ) $ when $ \Phi $ is the family $ \Psi $ of all closed sets in $ M $ and the set $ B $ is closed (in this case the symbol $ \Phi $ in the first sequence can be omitted, and, moreover, there is an isomorphism $ H _ {p} ( M , B ; {\mathcal G} ) = H _ {p} ( A ; {\mathcal G} ) $). When $ \Phi = \Psi $ and $ B $ is open, the symbol $ \Phi $ can be omitted only in the second and third terms of the homology sequence, since the homology groups $ H _ {p} ^ {\Phi \mid B } ( B ; {\mathcal G} ) $ depend not only on the topological space $ B $ but also on the inclusion $ B \subset M $.

When $ \Phi = \Psi $, this symbol (together with $ \Phi \cap A $) can be omitted in the cohomology sequence of the pair $ ( M , A ) $. If $ A $ is closed, then

$$ H _ \Phi ^ {q} ( M , A ; {\mathcal H} _ {n} ( {\mathcal G} ) ) = \ H _ {\Phi \mid B } ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) \ = H _ {\Phi \mid B } ^ {q} ( B ; {\mathcal H} _ {n} ( {\mathcal G} )) ; $$

when $ \Phi = \Psi $, the cohomology of $ B $ which occurs depends not only on $ B $ but also on the inclusion $ B \subset M $. If $ \Phi = c $ and $ A $ is closed, then $ \Phi \cap A $ can be replaced by $ c $ and in this case $ H _ {c} ^ {q} ( M ; A ; {\mathcal H} _ {n} ( {\mathcal G} ) ) = H _ {c} ^ {q} ( B ; {\mathcal H} _ {n} ( {\mathcal G} ) ) $ is a cohomology group "of the second kind" of the space $ B $. If $ \Phi = c $ but $ A $ is open, then the cohomology groups $ H _ {c \cap A } ^ {q} ( A ; {\mathcal H} _ {n} ( {\mathcal G} )) $ are not the same as $ H _ {c} ^ {q} ( A ; {\mathcal H} _ {n} ( {\mathcal G} )) $ (and depend on the inclusion $ A \subset M $).

Poincaré–Lefschetz duality can easily be applied to describe a duality between the homology and the cohomology of a manifold with boundary. It is useful to bear in mind that, if all the non-zero stalks of the sheaf $ {\mathcal H} _ {n} ( R) $ are isomorphic to the basic ring $ R $, then $ {\mathcal H} _ {n} ( {\mathcal G} ) = {\mathcal H} _ {n} ( R) \otimes _ {R} {\mathcal G} $.

When the sheaf $ {\mathcal H} _ {n} ( R) $ is locally constant, there exists a locally constant sheaf $ {\mathcal L} ( R) $, unique up to an isomorphism, for which $ {\mathcal L} ( R) \otimes _ {R} {\mathcal H} _ {n} ( R) = R $. Therefore, if in the homology sequence (*) the coefficient sheaf $ {\mathcal L} ( R) \otimes _ {R} {\mathcal G} $ is used instead of $ {\mathcal G} $, then in the cohomology sequence the sheaf $ {\mathcal G} $ appears (instead of $ {\mathcal H} _ {n} ( {\mathcal G} ) $). Thus, the pre-assigned coefficients can appear in the duality isomorphism either in the homology or in the cohomology.

The most natural proof of Poincaré duality is obtained by means of sheaf theory. Poincaré duality in topology is a particular case of Poincaré-type duality relations which are true for derived functors in homological algebra (another particular case is Poincaré-type duality for homology and cohomology of groups).

References

[1] E.G. Sklyarenko, "Homology and cohomology of general spaces" Itogi Nauk. i Tekhn. Sovr. Probl. Mat. , 50 (1989) pp. Chapt. 8
[2] E.G. Sklyarenko, "Poincaré duality and relations between the functors Ext and Tor" Math. Notes , 28 : 5 (1980) pp. 841–845 Mat. Zametki , 28 : 5 (1980) pp. 769–776
[3] W.S. Massey, "Homology and cohomology theory" , M. Dekker (1978)

Comments

One of the simpler forms of Poincaré duality is as follows. Let $ M ^ {n} $ be a compact orientable manifold (cf. Orientation) and $ c _ {M} \in H _ {n} ( M; \mathbf Z ) $ a fundamental class. Then the cap product with $ c _ {M} $ induces an isomorphism $ H ^ {i} ( M ; G) \rightarrow H _ {n-i} ( M ; G) $, cf. [a1]. A formulation using the slant product with an orientation class is given in [a2]. Poincaré duality (for de Rham cohomology) can also be seen as coming from the natural pairing $ H ^ {q} ( M) \otimes H _ {c} ^ {n-q} ( M) \rightarrow \mathbf R $ given by taking the wedge product of two differential forms followed by integration (with respect to a chosen volume form), giving $ H ^ {q} ( M) \simeq H _ {c} ^ {n-q} ( M) ^ {*} $, cf. [a3]. For Poincaré duality in the case of generalized cohomology theories defined by a spectrum $ E $, see [a4].

References

[a1] A. Dold, "Lectures on algebraic topology" , Springer (1972) pp. Sect. VIII.8.1
[a2] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Sect. 6.2
[a3] R. Bott, L.W. Tu, "Differential forms in algebraic topology" , Springer (1982) pp. Chapt. I, Sect. 5
[a4] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 316
How to Cite This Entry:
Poincaré duality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_duality&oldid=52202
This article was adapted from an original article by E.G. Sklyarenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article