Namespaces
Variants
Actions

Difference between revisions of "M-dependent-process"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 3 formulas out of 3 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
m (fixing spaces)
 
Line 11: Line 11:
  
 
A discrete-time [[Stochastic process|stochastic process]]  $  ( X _ {n} ) _ {n \in \mathbf Z }  $
 
A discrete-time [[Stochastic process|stochastic process]]  $  ( X _ {n} ) _ {n \in \mathbf Z }  $
is  $  m $-
+
is  $  m $-dependent if for all  $  k $
dependent if for all  $  k $
 
 
the joint stochastic variables  $  ( X _ {n} ) _ {n \leq  k }  $
 
the joint stochastic variables  $  ( X _ {n} ) _ {n \leq  k }  $
 
are independent of the joint stochastic variables  $  ( X _ {n} ) _ {n \geq  k + m + 1 }  $.
 
are independent of the joint stochastic variables  $  ( X _ {n} ) _ {n \geq  k + m + 1 }  $.
  
Such processes arise naturally as limits of rescaling transformations (renormalizations) and (hence) as examples of processes with scaling symmetries [[#References|[a1]]]. Examples of  $  m $-
+
Such processes arise naturally as limits of rescaling transformations (renormalizations) and (hence) as examples of processes with scaling symmetries [[#References|[a1]]]. Examples of  $  m $-dependent processes are given by  $  ( m + 1 ) $-block factors. These are defined as follows. Let  $  ( Z _ {n} ) _ {n \in \mathbf Z }  $
dependent processes are given by  $  ( m + 1 ) $-
 
block factors. These are defined as follows. Let  $  ( Z _ {n} ) _ {n \in \mathbf Z }  $
 
 
be an independent process and  $  \phi $
 
be an independent process and  $  \phi $
 
a function of  $  m + 1 $
 
a function of  $  m + 1 $
variables; let  $  X _ {n} = f ( Z _ {n} \dots Z _ {n+} m ) $;  
+
variables; let  $  X _ {n} = f ( Z _ {n} \dots Z _ {n+m} ) $;  
then the  $  ( m + 1 ) $-
+
then the  $  ( m + 1 ) $-block factor  $  X _ {n} $
block factor  $  X _ {n} $
+
is an  $  m $-dependent process.
is an  $  m $-
 
dependent process.
 
  
There are one-dependent processes which are not  $  2 $-
+
There are one-dependent processes which are not  $  2 $-block factors, [[#References|[a2]]].
block factors, [[#References|[a2]]].
 
  
 
====References====
 
====References====
 
<table><tr><td valign="top">[a1]</td> <td valign="top">  G.L. O'Brien,  "Scaling transformations for $\{ 0,1 \}$-valued sequences"  ''Z. Wahrscheinlichkeitstheorie Verw. Gebiete'' , '''53'''  (1980)  pp. 35–49</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Aaronson,  D. Gilat,  M. Keane,  V. de Valk,  "An algebraic construction of a class of one-dependent processes"  ''Ann. Probab.'' , '''17'''  (1988)  pp. 128–143</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  S. Janson,  "Runs in $m$-dependent sequences"  ''Ann. Probab.'' , '''12'''  (1984)  pp. 805–818</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  G. Haiman,  "Valeurs extrémales de suites stationaires de variable aléatoires $m$-dépendantes"  ''Ann. Inst. H. Poincaré Sect. B (N.S.)'' , '''17'''  (1981)  pp. 309–330</td></tr></table>
 
<table><tr><td valign="top">[a1]</td> <td valign="top">  G.L. O'Brien,  "Scaling transformations for $\{ 0,1 \}$-valued sequences"  ''Z. Wahrscheinlichkeitstheorie Verw. Gebiete'' , '''53'''  (1980)  pp. 35–49</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Aaronson,  D. Gilat,  M. Keane,  V. de Valk,  "An algebraic construction of a class of one-dependent processes"  ''Ann. Probab.'' , '''17'''  (1988)  pp. 128–143</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  S. Janson,  "Runs in $m$-dependent sequences"  ''Ann. Probab.'' , '''12'''  (1984)  pp. 805–818</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  G. Haiman,  "Valeurs extrémales de suites stationaires de variable aléatoires $m$-dépendantes"  ''Ann. Inst. H. Poincaré Sect. B (N.S.)'' , '''17'''  (1981)  pp. 309–330</td></tr></table>

Latest revision as of 12:34, 18 February 2022


A discrete-time stochastic process $ ( X _ {n} ) _ {n \in \mathbf Z } $ is $ m $-dependent if for all $ k $ the joint stochastic variables $ ( X _ {n} ) _ {n \leq k } $ are independent of the joint stochastic variables $ ( X _ {n} ) _ {n \geq k + m + 1 } $.

Such processes arise naturally as limits of rescaling transformations (renormalizations) and (hence) as examples of processes with scaling symmetries [a1]. Examples of $ m $-dependent processes are given by $ ( m + 1 ) $-block factors. These are defined as follows. Let $ ( Z _ {n} ) _ {n \in \mathbf Z } $ be an independent process and $ \phi $ a function of $ m + 1 $ variables; let $ X _ {n} = f ( Z _ {n} \dots Z _ {n+m} ) $; then the $ ( m + 1 ) $-block factor $ X _ {n} $ is an $ m $-dependent process.

There are one-dependent processes which are not $ 2 $-block factors, [a2].

References

[a1] G.L. O'Brien, "Scaling transformations for $\{ 0,1 \}$-valued sequences" Z. Wahrscheinlichkeitstheorie Verw. Gebiete , 53 (1980) pp. 35–49
[a2] J. Aaronson, D. Gilat, M. Keane, V. de Valk, "An algebraic construction of a class of one-dependent processes" Ann. Probab. , 17 (1988) pp. 128–143
[a3] S. Janson, "Runs in $m$-dependent sequences" Ann. Probab. , 12 (1984) pp. 805–818
[a4] G. Haiman, "Valeurs extrémales de suites stationaires de variable aléatoires $m$-dépendantes" Ann. Inst. H. Poincaré Sect. B (N.S.) , 17 (1981) pp. 309–330
How to Cite This Entry:
M-dependent-process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M-dependent-process&oldid=52074