Difference between revisions of "Real-analytic space"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing spaces) |
||
Line 16: | Line 16: | ||
Let $ V _ {a} $ | Let $ V _ {a} $ | ||
be the germ at a point $ a $ | be the germ at a point $ a $ | ||
− | of a real-analytic subset of $ \mathbf R ^ {n} $( | + | of a real-analytic subset of $ \mathbf R ^ {n} $ (cf. [[Analytic set|Analytic set]]). This defines the germ at $ a $ |
− | cf. [[Analytic set|Analytic set]]). This defines the germ at $ a $ | + | of a complex-analytic subset $ \widetilde{V} _ {a} $ |
− | of a complex-analytic subset $ | ||
of the space $ \mathbf C ^ {n} $ | of the space $ \mathbf C ^ {n} $ | ||
− | with the following equivalent properties: 1) $ \widetilde{V} | + | with the following equivalent properties: 1) $ \widetilde{V}_ {a} $ |
is the intersection of all germs of complex-analytic sets containing $ V _ {a} $; | is the intersection of all germs of complex-analytic sets containing $ V _ {a} $; | ||
2) if $ {\mathcal O} _ {V _ {a} } $ | 2) if $ {\mathcal O} _ {V _ {a} } $ | ||
is the analytic algebra of the germ $ V _ {a} $, | is the analytic algebra of the germ $ V _ {a} $, | ||
then $ {\mathcal O} _ {V _ {a} } \otimes \mathbf C $ | then $ {\mathcal O} _ {V _ {a} } \otimes \mathbf C $ | ||
− | is the analytic algebra of the germ $ \widetilde{V} | + | is the analytic algebra of the germ $ \widetilde{V}_ {a} $. |
− | The germ $ \widetilde{V} | + | The germ $ \widetilde{V}_ {a} $ |
is said to be the complexification of the germ $ V _ {a} $, | is said to be the complexification of the germ $ V _ {a} $, | ||
and $ V _ {a} $ | and $ V _ {a} $ | ||
− | is said to be the real part of the germ $ \widetilde{V} | + | is said to be the real part of the germ $ \widetilde{V}_ {a} $. |
Analogously, for any coherent real-analytic countably-infinite space $ X $ | Analogously, for any coherent real-analytic countably-infinite space $ X $ | ||
it is possible to construct the complexification $ \widetilde{X} $, | it is possible to construct the complexification $ \widetilde{X} $, |
Latest revision as of 16:15, 11 February 2022
An analytic space over the field $ \mathbf R $
of real numbers. Unlike in the case of complex-analytic spaces, the structure sheaves of real-analytic spaces need not be coherent (cf. Coherent sheaf). Real-analytic spaces are said to be coherent if their structure sheaves are coherent. All real-analytic manifolds (i.e. smooth real-analytic spaces) are coherent real-analytic spaces.
Let $ V _ {a} $ be the germ at a point $ a $ of a real-analytic subset of $ \mathbf R ^ {n} $ (cf. Analytic set). This defines the germ at $ a $ of a complex-analytic subset $ \widetilde{V} _ {a} $ of the space $ \mathbf C ^ {n} $ with the following equivalent properties: 1) $ \widetilde{V}_ {a} $ is the intersection of all germs of complex-analytic sets containing $ V _ {a} $; 2) if $ {\mathcal O} _ {V _ {a} } $ is the analytic algebra of the germ $ V _ {a} $, then $ {\mathcal O} _ {V _ {a} } \otimes \mathbf C $ is the analytic algebra of the germ $ \widetilde{V}_ {a} $. The germ $ \widetilde{V}_ {a} $ is said to be the complexification of the germ $ V _ {a} $, and $ V _ {a} $ is said to be the real part of the germ $ \widetilde{V}_ {a} $. Analogously, for any coherent real-analytic countably-infinite space $ X $ it is possible to construct the complexification $ \widetilde{X} $, which is a complex-analytic space. $ X $ will then have a fundamental system of neighbourhoods in $ \widetilde{X} $ which are Stein spaces (cf. Stein space).
The theory of coherent real-analytic spaces is similar to the theory of complex Stein spaces. Global sections of any coherent analytic sheaf of modules $ F $ on a coherent real-analytic countably-infinite space $ X $ generate modules of germs of its sections at any point of $ X $, and all groups $ H ^ {q} ( X, F ) $ vanish if $ q \geq 1 $.
For any finite-dimensional coherent real-analytic countably-infinite space $ ( X, {\mathcal O} _ {X} ) $ there exists a morphism
$$ f = ( f _ {0} , f _ {1} ): ( X, {\mathcal O} _ {X} ) \rightarrow \ ( \mathbf R ^ {n} , {\mathcal O} _ {\mathbf R ^ {n} } ) $$
such that $ f _ {0} $ is a proper one-to-one mapping of $ X $ into a coherent subspace in $ \mathbf R ^ {n} $, while $ f $ is an imbedding at the smooth points of $ X $. In particular, any (Hausdorff and countably-infinite) real-analytic manifold is isomorphic to a real-analytic submanifold in $ \mathbf R ^ {n} $. For a reduced coherent real-analytic space $ X $ the set of classes of isomorphic real-analytic principal fibre bundles with a real structure Lie group $ G $, admitting complexification, and base $ X $ is in one-to-one correspondence with the set of classes of isomorphic topological principal fibre bundles with the same structure group $ G $.
References
[1] | A. Tognoli, "Some results in the theory of real analytic spaces" M. Jurchesan (ed.) , Espaces Analytiques (Bucharest 1969) , Acad. Roumanie (1971) pp. 149–157 |
Comments
References
[a1] | H. Cartan, "Variétés analytiques réelles et variétés analytiques complexes" Bull. Soc. Math. France , 85 (1957) pp. 77–99 |
[a2] | F. Bruhat, H. Cartan, "Sur la structure des sous-ensembles analytiques réels" C.R. Acad. Sci. Paris , 244 (1957) pp. 988–900 |
[a3] | F. Bruhat, H. Cartan, "Sur les composantes irréductibles d'un sous-ensemble" C.R. Acad. Sci. Paris , 244 (1957) pp. 1123–1126 |
[a4] | F. Bruhat, H. Whitney, "Quelques propriétés fondamentales des ensembles analytiques-réels" Comm. Math. Helv. , 33 (1959) pp. 132–160 |
[a5] | R. Narasimhan, "Introduction to the theory of analytic spaces" , Lect. notes in math. , 25 , Springer (1966) |
[a6] | H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) |
Real-analytic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Real-analytic_space&oldid=52048