Namespaces
Variants
Actions

Difference between revisions of "Frobenius formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (using vdots and ddots)
 
Line 14: Line 14:
  
 
Let  $  x _ {1} \dots x _ {n} $
 
Let  $  x _ {1} \dots x _ {n} $
be independent variables. For any  $  n $-
+
be independent variables. For any  $  n $-tuple  $  \lambda = ( \lambda _ {1} \dots \lambda _ {n} ) $
tuple  $  \lambda = ( \lambda _ {1} \dots \lambda _ {n} ) $
 
 
of non-negative integers satisfying the condition  $  \lambda _ {1} \geq  \dots \geq  \lambda _ {n} $,  
 
of non-negative integers satisfying the condition  $  \lambda _ {1} \geq  \dots \geq  \lambda _ {n} $,  
 
let
 
let
Line 23: Line 22:
  
 
\begin{array}{lll}
 
\begin{array}{lll}
x _ {1} ^ {\lambda _ {1} + n - 1 }  &\dots &x _ {n} ^ {\lambda _ {1} + n - 1 }  \\
+
x _ {1} ^ {\lambda _ {1} + n - 1 }  &\cdots &x _ {n} ^ {\lambda _ {1} + n - 1 }  \\
\dots &\dots &\dots \\
+
\vdots &\ddots &\vdots \\
x _ {1} ^ {\lambda _ {n} }  &\dots &x _ {n} ^ {\lambda _ {n} }  \\
+
x _ {1} ^ {\lambda _ {n} }  &\cdots &x _ {n} ^ {\lambda _ {n} }  \\
 
\end{array}
 
\end{array}
 
  \  
 
  \  
Line 33: Line 32:
 
so that  $  W _ {0} $
 
so that  $  W _ {0} $
 
is the ordinary Vandermonde determinant. Let  $  \sum \lambda _ {i} = m $;  
 
is the ordinary Vandermonde determinant. Let  $  \sum \lambda _ {i} = m $;  
then after discarding zeros the  $  n $-
+
then after discarding zeros the  $  n $-tuple  $  \lambda $
tuple  $  \lambda $
 
 
can be regarded as a partition of the number  $  m $.  
 
can be regarded as a partition of the number  $  m $.  
 
Consider the corresponding irreducible representation  $  T _  \lambda  $
 
Consider the corresponding irreducible representation  $  T _  \lambda  $
Line 54: Line 52:
 
   = \  
 
   = \  
 
\sum _  \mu  a _ {\lambda \mu }  
 
\sum _  \mu  a _ {\lambda \mu }  
c _  \mu  ^ {-} 1 s _  \mu  ,
+
c _  \mu  ^ {- 1} s _  \mu  ,
 
$$
 
$$
  

Latest revision as of 16:18, 5 February 2022


A formula expressing a relation between the generalized Vandermonde determinant and the ordinary one (see Vandermonde determinant) in terms of sums of powers. The characters of representations of a symmetric group (cf. Representation of the symmetric groups) appear as coefficients in the Frobenius formula.

Let $ x _ {1} \dots x _ {n} $ be independent variables. For any $ n $-tuple $ \lambda = ( \lambda _ {1} \dots \lambda _ {n} ) $ of non-negative integers satisfying the condition $ \lambda _ {1} \geq \dots \geq \lambda _ {n} $, let

$$ W _ \lambda = \left | \begin{array}{lll} x _ {1} ^ {\lambda _ {1} + n - 1 } &\cdots &x _ {n} ^ {\lambda _ {1} + n - 1 } \\ \vdots &\ddots &\vdots \\ x _ {1} ^ {\lambda _ {n} } &\cdots &x _ {n} ^ {\lambda _ {n} } \\ \end{array} \ \right | , $$

so that $ W _ {0} $ is the ordinary Vandermonde determinant. Let $ \sum \lambda _ {i} = m $; then after discarding zeros the $ n $-tuple $ \lambda $ can be regarded as a partition of the number $ m $. Consider the corresponding irreducible representation $ T _ \lambda $ of the symmetric group $ S _ {m} $. For any partition $ \mu = ( \mu _ {1} \dots \mu _ {r} ) $ of $ m $ one denotes by $ a _ {\lambda \mu } $ the value of the character of $ T _ \lambda $ on the conjugacy class of $ S _ {m} $ determined by $ \mu $, and by $ c _ \mu $ the order of the centralizer of any permutation in this class. Let $ s _ \mu = s _ {\mu _ {1} } \dots s _ {\mu _ {r} } $, where $ s _ {k} = x _ {1} ^ {k} + \dots + x _ {n} ^ {k} $. Then

$$ \frac{W _ \lambda }{W _ {0} } = \ \sum _ \mu a _ {\lambda \mu } c _ \mu ^ {- 1} s _ \mu , $$

where the sum is taken over all (unordered) partitions of $ m $. Here, if the partition $ \mu $ contains $ k _ {1} $ ones, $ k _ {2} $ twos, etc., then

$$ c _ \mu = k _ {1} ! k _ {2} ! \dots 1 ^ {k _ {1} } 2 ^ {k _ {2} } \dots . $$

If $ n \geq m $, then Frobenius' formula can be put in the form

$$ \sum _ \lambda a _ {\lambda \mu } W _ \lambda = \ s _ \mu W _ {0} , $$

where the sum is taken over all partitions of $ m $( adding the appropriate number of zeros). The last formula can be used to compute the characters of the symmetric group. Namely, $ a _ {\lambda \mu } $ is the coefficient of $ x _ {1} ^ {\lambda _ {1} + n - 1 } {} \dots x _ {n} ^ {\lambda _ {n} } $ in the polynomial $ s _ \mu W _ {0} $.

References

[1] F.D. Murnagan, "The theory of group representations" , Johns Hopkins Univ. Press (1938)

Comments

See also Character of a representation of a group.

References

[a1] H. Boerner, "Representations of groups" , North-Holland (1970) (Translated from German)
[a2] D.E. Littlewood, "The theory of group characters and matrix representations of groups" , Clarendon Press (1950)
[a3] I.G. Macdonald, "Symmetric functions and Hall polynomials" , Clarendon Press (1979)
[a4] B.G. Wybourne, "Symmetry principles and atomic spectroscopy" , Wiley (Interscience) (1970)
How to Cite This Entry:
Frobenius formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Frobenius_formula&oldid=52043
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article