Difference between revisions of "Alternating-direction implicit method"
m (→References: texify reference) |
m (→References: typo) |
||
Line 81: | Line 81: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Douglas, "On the numerical integration of $u_{xx}+u_{yy}=u_{ | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Douglas, "On the numerical integration of $u_{xx}+u_{yy}=u_{t}$ by implicit methods" ''SIAM J.'' , '''3''' (1962) pp. 42–65</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lennart Johnsson, Y. Saad, M.H. Schultz, "Alternating direction methods on multiprocessors" ''SIAM J. Sci. Statist. Comput.'' , '''8''' (1987) pp. 686–700</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D.W. Peaceman, H.H. Rachford, "The numerical solution of parabolic and elliptic differential equations" ''SIAM J.'' , '''3''' (1955) pp. 28–41</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.S. Varga, "Matrix iterative analysis" , Prentice-Hall (1962)</TD></TR></table> |
Latest revision as of 01:55, 21 January 2022
A method introduced in 1955 by D.W. Peaceman and H.H. Rachford [a3] and J. Douglas [a1] as a technique for the numerical solution of elliptic and parabolic differential equations (cf. Elliptic partial differential equation; Parabolic partial differential equation). Let
be a bounded region and K _ {1} ,K _ {2} , K _ {0}
continuous functions with K _ {1} ( x,y ) > 0 ,
K _ {2} ( x,y ) > 0 ,
K _ {0} ( x,y ) \geq 0
in \Omega .
The discretization of the elliptic boundary value problem (cf. Boundary value problem, elliptic equations)
- ( K _ {1} u _ {x} ) _ {x} - ( K _ {2} u _ {y} ) _ {y} + K _ {0} u = f \textrm{ in } \Omega,
u = g \textrm{ on } \partial \Omega,
in a bounded region \Omega \subset \mathbf R ^ {2} by finite differences leads to a system of linear equations of the form
( H + V + S ) \mathbf u = \mathbf f .
Here, the matrices H and V stand for the discretization of the differential operators in the x (horizontal) and y (vertical) direction, respectively, and S is a diagonal matrix representing multiplication by K _ {0} . The alternating-direction implicit method attempts to solve this linear system by the iteration
\left ( H + { \frac{1}{2} } S + \rho _ {k} I \right ) \mathbf u _ {k - {1 / 2 } } = \left ( \rho _ {k} I - V - { \frac{1}{2} } S \right ) \mathbf u _ {k - 1 } + \mathbf f,
\left ( V + { \frac{1}{2} } S + \rho _ {k} I \right ) \mathbf u _ {k} = \left ( \rho _ {k} I - H - { \frac{1}{2} } S \right ) \mathbf u _ {k - {1 / 2 } } + \mathbf f, k = 1, 2, \dots,
with some parameters \rho _ {k} > 0 . On a uniform mesh, each of the two half-steps in the above iteration scheme requires the solution of a number of tri-diagonal systems arising from one-dimensional difference operators, a task which is relatively inexpensive. On an n by n rectangular mesh, the appropriate choice of a set of parameters \rho _ {1} \dots \rho _ {l} (with l = { \mathop{\rm log} } n ) in the above iteration allows one to solve the Poisson equation ( K _ {1} = K _ {2} \equiv 1 , K _ {0} = 0 ) with an operation count of O ( n ^ {2} { \mathop{\rm log} } n ) , which is almost optimal. (Optimal methods with an operation count proportional to the number of unknowns n ^ {2} have later been developed using multi-grid methods.)
For the parabolic initial-boundary value problem
u _ {t} = ( K _ {1} u _ {x} ) _ {x} + ( K _ {2} u _ {y} ) _ {y} + K _ {0} u = f \textrm{ in } ( 0,T ) \times \Omega,
u = g \textrm{ on } ( 0,T ) \times \partial \Omega, u = u _ {0} \textrm{ for } t = 0,
implicit discretization in time requires the solution of an elliptic boundary value problem of the type above in each time-step. The alternating-direction implicit method advances in time by inverting only the one-dimensional difference operators in x - and in y -direction. Each time step is therefore much less expensive. It can be shown to be unconditionally stable. The classical reference is [a4], Chapts. 7, 8.
In the 1980{}s, the apparent potential for parallelism in the alternating-direction implicit method led to research on the appropriate implementation on parallel computers [a2].
References
[a1] | J. Douglas, "On the numerical integration of u_{xx}+u_{yy}=u_{t} by implicit methods" SIAM J. , 3 (1962) pp. 42–65 |
[a2] | S. Lennart Johnsson, Y. Saad, M.H. Schultz, "Alternating direction methods on multiprocessors" SIAM J. Sci. Statist. Comput. , 8 (1987) pp. 686–700 |
[a3] | D.W. Peaceman, H.H. Rachford, "The numerical solution of parabolic and elliptic differential equations" SIAM J. , 3 (1955) pp. 28–41 |
[a4] | R.S. Varga, "Matrix iterative analysis" , Prentice-Hall (1962) |
Alternating-direction implicit method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Alternating-direction_implicit_method&oldid=51957