Namespaces
Variants
Actions

Difference between revisions of "Alternating-direction implicit method"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (fixing spaces)
m (→‎References: texify reference)
Line 81: Line 81:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Douglas,  "On the numerical integration of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110540/a11054032.png" /> by implicit methods"  ''SIAM J.'' , '''3'''  (1962)  pp. 42–65</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Lennart Johnsson,  Y. Saad,  M.H. Schultz,  "Alternating direction methods on multiprocessors"  ''SIAM J. Sci. Statist. Comput.'' , '''8'''  (1987)  pp. 686–700</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D.W. Peaceman,  H.H. Rachford,  "The numerical solution of parabolic and elliptic differential equations"  ''SIAM J.'' , '''3'''  (1955)  pp. 28–41</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.S. Varga,  "Matrix iterative analysis" , Prentice-Hall  (1962)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Douglas,  "On the numerical integration of $u_{xx}+u_{yy}=u_{y}$ by implicit methods"  ''SIAM J.'' , '''3'''  (1962)  pp. 42–65</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Lennart Johnsson,  Y. Saad,  M.H. Schultz,  "Alternating direction methods on multiprocessors"  ''SIAM J. Sci. Statist. Comput.'' , '''8'''  (1987)  pp. 686–700</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D.W. Peaceman,  H.H. Rachford,  "The numerical solution of parabolic and elliptic differential equations"  ''SIAM J.'' , '''3'''  (1955)  pp. 28–41</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.S. Varga,  "Matrix iterative analysis" , Prentice-Hall  (1962)</TD></TR></table>

Revision as of 01:54, 21 January 2022


A method introduced in 1955 by D.W. Peaceman and H.H. Rachford [a3] and J. Douglas [a1] as a technique for the numerical solution of elliptic and parabolic differential equations (cf. Elliptic partial differential equation; Parabolic partial differential equation). Let $ \Omega \in \mathbf R ^ {2} $ be a bounded region and $ K _ {1} ,K _ {2} , K _ {0} $ continuous functions with $ K _ {1} ( x,y ) > 0 $, $ K _ {2} ( x,y ) > 0 $, $ K _ {0} ( x,y ) \geq 0 $ in $ \Omega $. The discretization of the elliptic boundary value problem (cf. Boundary value problem, elliptic equations)

$$ - ( K _ {1} u _ {x} ) _ {x} - ( K _ {2} u _ {y} ) _ {y} + K _ {0} u = f \textrm{ in } \Omega, $$

$$ u = g \textrm{ on } \partial \Omega, $$

in a bounded region $ \Omega \subset \mathbf R ^ {2} $ by finite differences leads to a system of linear equations of the form

$$ ( H + V + S ) \mathbf u = \mathbf f . $$

Here, the matrices $ H $ and $ V $ stand for the discretization of the differential operators in the $ x $ (horizontal) and $ y $ (vertical) direction, respectively, and $ S $ is a diagonal matrix representing multiplication by $ K _ {0} $. The alternating-direction implicit method attempts to solve this linear system by the iteration

$$ \left ( H + { \frac{1}{2} } S + \rho _ {k} I \right ) \mathbf u _ {k - {1 / 2 } } = \left ( \rho _ {k} I - V - { \frac{1}{2} } S \right ) \mathbf u _ {k - 1 } + \mathbf f, $$

$$ \left ( V + { \frac{1}{2} } S + \rho _ {k} I \right ) \mathbf u _ {k} = \left ( \rho _ {k} I - H - { \frac{1}{2} } S \right ) \mathbf u _ {k - {1 / 2 } } + \mathbf f, k = 1, 2, \dots, $$

with some parameters $ \rho _ {k} > 0 $. On a uniform mesh, each of the two half-steps in the above iteration scheme requires the solution of a number of tri-diagonal systems arising from one-dimensional difference operators, a task which is relatively inexpensive. On an $ n $ by $ n $ rectangular mesh, the appropriate choice of a set of parameters $ \rho _ {1} \dots \rho _ {l} $ (with $ l = { \mathop{\rm log} } n $) in the above iteration allows one to solve the Poisson equation ( $ K _ {1} = K _ {2} \equiv 1 $, $ K _ {0} = 0 $) with an operation count of $ O ( n ^ {2} { \mathop{\rm log} } n ) $, which is almost optimal. (Optimal methods with an operation count proportional to the number of unknowns $ n ^ {2} $ have later been developed using multi-grid methods.)

For the parabolic initial-boundary value problem

$$ u _ {t} = ( K _ {1} u _ {x} ) _ {x} + ( K _ {2} u _ {y} ) _ {y} + K _ {0} u = f \textrm{ in } ( 0,T ) \times \Omega, $$

$$ u = g \textrm{ on } ( 0,T ) \times \partial \Omega, u = u _ {0} \textrm{ for } t = 0, $$

implicit discretization in time requires the solution of an elliptic boundary value problem of the type above in each time-step. The alternating-direction implicit method advances in time by inverting only the one-dimensional difference operators in $ x $- and in $ y $-direction. Each time step is therefore much less expensive. It can be shown to be unconditionally stable. The classical reference is [a4], Chapts. 7, 8.

In the 1980{}s, the apparent potential for parallelism in the alternating-direction implicit method led to research on the appropriate implementation on parallel computers [a2].

References

[a1] J. Douglas, "On the numerical integration of $u_{xx}+u_{yy}=u_{y}$ by implicit methods" SIAM J. , 3 (1962) pp. 42–65
[a2] S. Lennart Johnsson, Y. Saad, M.H. Schultz, "Alternating direction methods on multiprocessors" SIAM J. Sci. Statist. Comput. , 8 (1987) pp. 686–700
[a3] D.W. Peaceman, H.H. Rachford, "The numerical solution of parabolic and elliptic differential equations" SIAM J. , 3 (1955) pp. 28–41
[a4] R.S. Varga, "Matrix iterative analysis" , Prentice-Hall (1962)
How to Cite This Entry:
Alternating-direction implicit method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Alternating-direction_implicit_method&oldid=51956
This article was adapted from an original article by G. Starke (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article