Namespaces
Variants
Actions

Difference between revisions of "Schur theorems"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Typos, tex done)
m (using vdots and ddots)
 
Line 17: Line 17:
 
Let  $  \mathbf C ^ { n } $,  
 
Let  $  \mathbf C ^ { n } $,  
 
$  n \geq  1 $,  
 
$  n \geq  1 $,  
be the  $  n $-
+
be the  $  n $-dimensional complex Euclidean space, its points are  $  n $-
dimensional complex Euclidean space, its points are  $  n $-
+
tuples of complex numbers  $  { ( c _ { 0 }, \dots, c _ {  {n-1}  } ) } $;  
tuples of complex numbers  $  { ( c _ { 0 }  \dots c _ {  {n-1}  } ) } $;  
 
 
let  $  B ^ { { ( n) } } $
 
let  $  B ^ { { ( n) } } $
be a set of points  $  { ( c _ { 0 } \dots c _ {  {n-1}  } ) } \in \mathbf C ^ { n } $
+
be a set of points  $  { ( c _ { 0 }, \dots, c _ {  {n-1}  } ) } \in \mathbf C ^ { n } $
such that the numbers  $  c _ { 0 } \dots c _ {  {n-1}  } $
+
such that the numbers  $  c _ { 0 }, \dots, c _ {  {n-1}  } $
 
are the first  $  n $
 
are the first  $  n $
 
coefficients of some function from  $  B $.  
 
coefficients of some function from  $  B $.  
Line 29: Line 28:
 
Then the following theorems hold.
 
Then the following theorems hold.
  
Schur's first theorem: To the points  $  { ( c _ { 0 }  \dots c _ {  {n-1}  } ) } $
+
Schur's first theorem: To the points  $  { ( c _ { 0 }, \dots, c _ {  {n-1}  } ) } $
 
on the boundary of  $  B ^ { { ( n) } } $
 
on the boundary of  $  B ^ { { ( n) } } $
 
there correspond in  $  B $
 
there correspond in  $  B $
Line 36: Line 35:
 
$$  \frac{ \overline{\alpha _ {  {n-1}  } } + \overline{\alpha _ {  {n-2}  } }  {z+\dots}  + \overline{\alpha _ { 0 }  } z ^ {  {n-1}  }  }{ \alpha _ { 0 }  {+\alpha} _ { 1 }  {z+\dots} {+\alpha} _ {  {n-1}  } z ^ {  {n-1}  }  }  .  $$
 
$$  \frac{ \overline{\alpha _ {  {n-1}  } } + \overline{\alpha _ {  {n-2}  } }  {z+\dots}  + \overline{\alpha _ { 0 }  } z ^ {  {n-1}  }  }{ \alpha _ { 0 }  {+\alpha} _ { 1 }  {z+\dots} {+\alpha} _ {  {n-1}  } z ^ {  {n-1}  }  }  .  $$
  
Schur's second theorem: A necessary and sufficient condition for  $  { ( c _ { 0 }  \dots c _ {  {n-1}  } ) } $
+
Schur's second theorem: A necessary and sufficient condition for  $  { ( c _ { 0 }, \dots, c _ {  {n-1}  } ) } $
 
to be an interior point of  $  B ^ { { ( n) } } $
 
to be an interior point of  $  B ^ { { ( n) } } $
is that the following inequalities hold for  $  k = 1 \dots n $:
+
is that the following inequalities hold for  $  k = 1, \dots, n $:
  
$$  \left |  \begin{array}{llllllll}  1  & 0  &\cdot & 0  &c _ { 0 }  &c _ { 1 }  &\cdot &c _ {  {k-1}  }  \\  0  & 1  &\cdot & 0  & 0  &c _ { 0 }  &\cdot &c _ {  {k-2}  }  \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\  0  & 0  &\cdot & 1  & 0  & 0  &\cdot &c _ { 0 }  \\ \overline{c _ { 0 }  }  & 0  &\cdot & 0  & 1  & 0  &\cdot & 0  \\ \overline{c _ { 1 }  }  &\overline{c _ { 0 }  }  &\cdot & 0  & 0  & 1  &\cdot & 0  \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ \overline{c _ {  {k-1}  } }  &\overline{c _ {  {k-2}  } }  &\cdot &\overline{c _ { 0 }  }  & 0  & 0  &\cdot & 1  \\ \end{array}  \right |  >  0.  $$
+
$$  \left |  \begin{array}{llllllll}  1  & 0  &\cdots & 0  &c _ { 0 }  &c _ { 1 }  &\cdots &c _ {  {k-1}  }  \\  0  & 1  &\cdots & 0  & 0  &c _ { 0 }  &\cdots &c _ {  {k-2}  }  \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\  0  & 0  &\cdots & 1  & 0  & 0  &\cdots &c _ { 0 }  \\ \overline{c _ { 0 }  }  & 0  &\cdots & 0  & 1  & 0  &\cdots & 0  \\ \overline{c _ { 1 }  }  &\overline{c _ { 0 }  }  &\cdots & 0  & 0  & 1  &\cdots & 0  \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ \overline{c _ {  {k-1}  } }  &\overline{c _ {  {k-2}  } }  &\cdots &\overline{c _ { 0 }  }  & 0  & 0  &\cdots & 1  \\ \end{array}  \right |  >  0.  $$
  
 
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.
 
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.

Latest revision as of 00:51, 21 January 2022


Theorems for finding a solution to the coefficient problem for bounded analytic functions. They were obtained by I. Schur [1]. Let $ B $ be the class of regular functions $ f{ ( z) } = c _ { 0 } {+c} _ { 1 } {z+\dots} $ in $ | z | < 1 $ satisfying in it the condition $ | f{ ( z ) } | \leq 1 $. Let $ \mathbf C ^ { n } $, $ n \geq 1 $, be the $ n $-dimensional complex Euclidean space, its points are $ n $- tuples of complex numbers $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $; let $ B ^ { { ( n) } } $ be a set of points $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } \in \mathbf C ^ { n } $ such that the numbers $ c _ { 0 }, \dots, c _ { {n-1} } $ are the first $ n $ coefficients of some function from $ B $. The sets $ B ^ { { ( n) } } $ are closed, bounded and convex in $ \mathbf C ^ { n } $. Then the following theorems hold.

Schur's first theorem: To the points $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $ on the boundary of $ B ^ { { ( n) } } $ there correspond in $ B $ only rational functions of the form

$$ \frac{ \overline{\alpha _ { {n-1} } } + \overline{\alpha _ { {n-2} } } {z+\dots} + \overline{\alpha _ { 0 } } z ^ { {n-1} } }{ \alpha _ { 0 } {+\alpha} _ { 1 } {z+\dots} {+\alpha} _ { {n-1} } z ^ { {n-1} } } . $$

Schur's second theorem: A necessary and sufficient condition for $ { ( c _ { 0 }, \dots, c _ { {n-1} } ) } $ to be an interior point of $ B ^ { { ( n) } } $ is that the following inequalities hold for $ k = 1, \dots, n $:

$$ \left | \begin{array}{llllllll} 1 & 0 &\cdots & 0 &c _ { 0 } &c _ { 1 } &\cdots &c _ { {k-1} } \\ 0 & 1 &\cdots & 0 & 0 &c _ { 0 } &\cdots &c _ { {k-2} } \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ 0 & 0 &\cdots & 1 & 0 & 0 &\cdots &c _ { 0 } \\ \overline{c _ { 0 } } & 0 &\cdots & 0 & 1 & 0 &\cdots & 0 \\ \overline{c _ { 1 } } &\overline{c _ { 0 } } &\cdots & 0 & 0 & 1 &\cdots & 0 \\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\ddots &\vdots \\ \overline{c _ { {k-1} } } &\overline{c _ { {k-2} } } &\cdots &\overline{c _ { 0 } } & 0 & 0 &\cdots & 1 \\ \end{array} \right | > 0. $$

Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.

References

[1] I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" J. Reine Angew. Math. , 147 (1917) pp. 205–232
[2] L. Bieberbach, "Lehrbuch der Funktionentheorie" , 2 , Teubner (1931)
[3] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)

Comments

References

[a1] P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11
[a2] J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40
How to Cite This Entry:
Schur theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_theorems&oldid=51947
This article was adapted from an original article by Yu.E. Alenitsyn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article