Namespaces
Variants
Actions

Difference between revisions of "Allison-Hein triple system"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Automatically changed introduction)
m (fix tex)
 
Line 6: Line 6:
 
Out of 21 formulas, 19 were replaced by TEX code.-->
 
Out of 21 formulas, 19 were replaced by TEX code.-->
  
{{TEX|semi-auto}}{{TEX|part}}
+
{{TEX|done}}
 
The concept of a [[triple system]], i.e. a [[Vector space|vector space]] $V$ over a field $K$ together with a $K$-[[trilinear mapping]] $V \times V \times V \rightarrow V$, is mainly used in the theory of non-associative algebras and appears in the construction of Lie algebras (cf. also [[Lie algebra|Lie algebra]]; [[Non-associative rings and algebras|Non-associative rings and algebras]]).
 
The concept of a [[triple system]], i.e. a [[Vector space|vector space]] $V$ over a field $K$ together with a $K$-[[trilinear mapping]] $V \times V \times V \rightarrow V$, is mainly used in the theory of non-associative algebras and appears in the construction of Lie algebras (cf. also [[Lie algebra|Lie algebra]]; [[Non-associative rings and algebras|Non-associative rings and algebras]]).
  
A [[Module|module]] $V$ over a field of characteristic not equal to two or three together with a trilinear mapping $( x , y , z ) \rightarrow \langle x y z \rangle$ from $V \times V \times V$ to $V$ is said to be an Allison–Hein triple system (or a $J$-ternary algebra) if
+
A [[Module|module]] $V$ over a field of characteristic not equal to two or three together with a trilinear mapping $( x , y , z ) \mapsto \langle x y z \rangle$ from $V \times V \times V$ to $V$ is said to be an Allison–Hein triple system (or a $J$-ternary algebra) if
  
\begin{equation} \tag{a1} \langle x y \langle u v w \rangle \rangle = \end{equation}
+
\begin{equation} \tag{a1} \langle x y \langle u v w \rangle \rangle =  
 
+
\langle \langle x y u \rangle v w \rangle + \langle u \langle y x v \rangle w \rangle + \langle u v \langle x y w \rangle \rangle
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020012.png"/></td> </tr></table>
+
\end{equation}
  
 
\begin{equation} \tag{a2} \langle x y z \rangle - \langle z y x \rangle = \langle z x y \rangle - \langle x z y \rangle \end{equation}
 
\begin{equation} \tag{a2} \langle x y z \rangle - \langle z y x \rangle = \langle z x y \rangle - \langle x z y \rangle \end{equation}
Line 21: Line 21:
 
From the identities (a1) and (a2) one deduces the relation
 
From the identities (a1) and (a2) one deduces the relation
  
\begin{equation*} K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0, \end{equation*}
+
\begin{equation*} K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle ) + K ( a , K ( c , d ) b ) = 0, \end{equation*}
  
where $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$. Hence this triple system may be regarded as a variation of a [[Freudenthal–Kantor triple system|Freudenthal–Kantor triple system]]. In particular, it is important that the linear span $\{ K ( a , b ) \} _ { \operatorname{span} }$ of the set $K ( a , b )$ is a Jordan subalgebra (cf. also [[Jordan algebra|Jordan algebra]]) of $( \text { End } V ) ^ { + }$ with respect to $A \circ B = ( A B + B A ) / 2$.
+
where $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$. Hence this triple system may be regarded as a variation of a [[Freudenthal–Kantor triple system]]. In particular, it is important that the [[linear span]] $\{ K ( a , b ) \} _ { \operatorname{span} }$ of the set $K ( a , b )$ is a Jordan subalgebra (cf. also [[Jordan algebra]]) of $( \text { End } V ) ^ { + }$ with respect to $A \circ B = ( A B + B A ) / 2$.
  
 
====References====
 
====References====
<table><tr><td valign="top">[a1]</td> <td valign="top">  B.N. Allison,  "A construction of Lie algebras from $J$-ternary algebras"  ''Amer. J. Math.'' , '''98'''  (1976)  pp. 285–294</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  W. Hein,  "A construction of Lie algebras by triple systems"  ''Trans. Amer. Math. Soc.'' , '''205'''  (1975)  pp. 79–95</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  N. Kamiya,  "A structure theory of Freudenthal–Kantor triple systems II"  ''Commun. Math. Univ. Sancti Pauli'' , '''38'''  (1989)  pp. 41–60</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  K. Yamaguti,  "On the metasymplectic geometry and triple systems"  ''Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ.'' , '''306'''  (1977)  pp. 55–92  (In Japanese)</td></tr></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  B.N. Allison,  "A construction of Lie algebras from $J$-ternary algebras"  ''Amer. J. Math.'' , '''98'''  (1976)  pp. 285–294</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  W. Hein,  "A construction of Lie algebras by triple systems"  ''Trans. Amer. Math. Soc.'' , '''205'''  (1975)  pp. 79–95</td></tr>
 +
<tr><td valign="top">[a3]</td> <td valign="top">  N. Kamiya,  "A structure theory of Freudenthal–Kantor triple systems II"  ''Commun. Math. Univ. Sancti Pauli'' , '''38'''  (1989)  pp. 41–60</td></tr>
 +
<tr><td valign="top">[a4]</td> <td valign="top">  K. Yamaguti,  "On the metasymplectic geometry and triple systems"  ''Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ.'' , '''306'''  (1977)  pp. 55–92  (In Japanese)</td></tr>
 +
</table>

Latest revision as of 19:51, 27 February 2021

The concept of a triple system, i.e. a vector space $V$ over a field $K$ together with a $K$-trilinear mapping $V \times V \times V \rightarrow V$, is mainly used in the theory of non-associative algebras and appears in the construction of Lie algebras (cf. also Lie algebra; Non-associative rings and algebras).

A module $V$ over a field of characteristic not equal to two or three together with a trilinear mapping $( x , y , z ) \mapsto \langle x y z \rangle$ from $V \times V \times V$ to $V$ is said to be an Allison–Hein triple system (or a $J$-ternary algebra) if

\begin{equation} \tag{a1} \langle x y \langle u v w \rangle \rangle = \langle \langle x y u \rangle v w \rangle + \langle u \langle y x v \rangle w \rangle + \langle u v \langle x y w \rangle \rangle \end{equation}

\begin{equation} \tag{a2} \langle x y z \rangle - \langle z y x \rangle = \langle z x y \rangle - \langle x z y \rangle \end{equation}

for all $x , y , z , u , v , w \in V$.

From the identities (a1) and (a2) one deduces the relation

\begin{equation*} K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle ) + K ( a , K ( c , d ) b ) = 0, \end{equation*}

where $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$. Hence this triple system may be regarded as a variation of a Freudenthal–Kantor triple system. In particular, it is important that the linear span $\{ K ( a , b ) \} _ { \operatorname{span} }$ of the set $K ( a , b )$ is a Jordan subalgebra (cf. also Jordan algebra) of $( \text { End } V ) ^ { + }$ with respect to $A \circ B = ( A B + B A ) / 2$.

References

[a1] B.N. Allison, "A construction of Lie algebras from $J$-ternary algebras" Amer. J. Math. , 98 (1976) pp. 285–294
[a2] W. Hein, "A construction of Lie algebras by triple systems" Trans. Amer. Math. Soc. , 205 (1975) pp. 79–95
[a3] N. Kamiya, "A structure theory of Freudenthal–Kantor triple systems II" Commun. Math. Univ. Sancti Pauli , 38 (1989) pp. 41–60
[a4] K. Yamaguti, "On the metasymplectic geometry and triple systems" Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ. , 306 (1977) pp. 55–92 (In Japanese)
How to Cite This Entry:
Allison-Hein triple system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Allison-Hein_triple_system&oldid=51661
This article was adapted from an original article by Noriaki Kamiya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article