Difference between revisions of "User:Richard Pinch/redlinks"
From Encyclopedia of Mathematics
(added Hopf constant) |
|||
Line 71: | Line 71: | ||
* [[Menger theorem]] -- K. Engel, Sperner Theory, Encyclopedia of Mathematics and its Applications '''65''', Cambridge (1997) ISBN 0-521-45206-6 {{ZBL|0868.05001}} | * [[Menger theorem]] -- K. Engel, Sperner Theory, Encyclopedia of Mathematics and its Applications '''65''', Cambridge (1997) ISBN 0-521-45206-6 {{ZBL|0868.05001}} | ||
* [[Cage]], [[girth]] -- W.T. Tutte, "Connectivity in graphs", Mathematical Expositions '''15''', University of Toronto Press (1966) {{ZBL|0146.45603}} | * [[Cage]], [[girth]] -- W.T. Tutte, "Connectivity in graphs", Mathematical Expositions '''15''', University of Toronto Press (1966) {{ZBL|0146.45603}} | ||
+ | * [[Hopf constant]] -- Steven R. Finch, ''Mathematical Constants'', Cambridge University Press (2003) ISBN 0-521-81805-2 {{ZBL|1054.00001}} |
Revision as of 12:51, 26 February 2021
- genus field
- Hilbert class field
- Köthe conjecture
- characteristic of a ring
- Hardy–Littlewood conjecture, singular series
- Hypothesis H, Schinzel hypothesis
- Tauberian theorem
- Siegel zero
- permutation representation
- radical extension
- First Isomorphism Theorem
- operad
- tropical algebra, tropical geometry
- abelian extension
- Artin conductor
- cyclic extension
- ramification, tame ramification, wild ramification
- linear series
- biquadratic residue, quartic residue
- cubic reciprocity, quartic reciprocity
- direct limit
- Priestley space
- matrix product
- partition of a set
- wedge product
- smash product
- Reed–Solomon code
- Dilworth theorem
- Ax–Kochen theorem
- Sturm comparison theorem
- Hurwitz problem, Hurwitz–Radon theorem
- Tarski–Seidenberg theorem
- Birch–Swinnerton-Dyer conjecture
- Tsen–Lang theory
- $p$-field
- $C_1$-field
- ultrapower
- catenary ring, universally catenary ring
- valuation ring, discrete valuation ring
- Goldie ring
- syndrome, syndrome decoding
- quaternionic structure
- numerical semi-group, telescopic semi-group
- divisibility sequence, elliptic divisibility sequence
- Somos sequence
- Knaster–Tarski fix-point theorem
- dendriform algebra
- combinatorial species
- free differential calculus, Fox derivative
- Myhill–Nerode theorem, Myhill–Nerode bialgebra
- incidence algebra
- composition algebra
- Sturmian sequence
- algebraic integer, maximal order
- colimit
- Hurwitz matrix
- cocyclic group
- Nottingham group
- adjugate matrix
- transducer
- oligomorphic group -- Cameron, Peter J. Oligomorphic permutation groups. LMS Lecture Note Series 152 ISBN 0 521 38836 8 (Cambridge University Press, 1990) Zbl 0813.20002 DOI 10.1017/CBO9780511549809
- Catalan number, Motzkin number
- unlikely intersection -- Zannier, U. "Some problems of unlikely intersections in arithmetic and geometry" with appendices by David Masser, Annals of Mathematics Studies 181 ISBN 978-0-691-15371-1 (Princeton University Press, 2012) Zbl 1246.14003
- Ulm subgroup --László Fuchs; "Abelian Groups" (Springer, 2015) ISBN 3-319-19422-4 Zbl 1416.20001
- quandle, rack, shelf -- Mohamed Elhamdadi, Sam Nelson, "Quandles" Student Mathematical Library 74 (American Mathematical Soc., 2015) ISBN 1470422131
- pregroup, protogroup -- J. Stallings, Group theory and three-dimensional manifolds (Yale Univ. Monogr. 4, 1971) Zbl 0241.57001
- Gelfand–Naimark theorem
- Zaremba conjecture
- Freiman homomorphism
- Stern–Brocot tree -- C. Reutenauer, From Christoffel words to Markoff numbers, Oxford, 2019 ISBN 978-0-19-882754-2 Zbl 1443.11002
- Menger theorem -- K. Engel, Sperner Theory, Encyclopedia of Mathematics and its Applications 65, Cambridge (1997) ISBN 0-521-45206-6 Zbl 0868.05001
- Cage, girth -- W.T. Tutte, "Connectivity in graphs", Mathematical Expositions 15, University of Toronto Press (1966) Zbl 0146.45603
- Hopf constant -- Steven R. Finch, Mathematical Constants, Cambridge University Press (2003) ISBN 0-521-81805-2 Zbl 1054.00001
How to Cite This Entry:
Richard Pinch/redlinks. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/redlinks&oldid=51648
Richard Pinch/redlinks. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/redlinks&oldid=51648