Difference between revisions of "Specht module"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 100 formulas out of 102 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 102 formulas, 100 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|partial}} | |
+ | Let $n \in \mathbf N$ and suppose $\lambda$ is a (proper) partition of $n$. This means that $\lambda = ( \lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0 )$, where each $\lambda _ { i } \in \bf Z$ and $\sum _ { i } \lambda _ { i } = n$. If $r$ is maximal with $\lambda _ { r } > 0$, then one says that $\lambda$ is a partition of $n$ into $r$ parts. | ||
− | + | A $\lambda$-tableau (sometimes called a [[Young tableau|Young tableau]] associated with $\lambda$) is an array consisting of the numbers $1 , \dots , n$ listed in $r$ rows with exactly $\lambda _ { i }$ numbers occurring in the $i$th row, $ i = 1 , \ldots , r$. If, for instance, $n = 9$ and $\lambda = ( 4,3,1,1 )$, then the following arrays are examples of $\lambda$-tableaux: | |
− | + | \begin{equation*} \left. \begin{array} { l l l l l l l l l } { 1 } & { 2 } & { 3 } & { 4 } & { } & { 9 } & { 2 } & { 3 } & { 6 } \\ { 5 } & { 6 } & { 7 } & { \square } & { \text { and } } & { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } & { } & { 5 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } & { } & { 8 } & { \square } & { \square } & { \square } \end{array} \right. \end{equation*} | |
− | + | One says that two $\lambda$-tableaux are equivalent if for each $ i = 1 , \ldots , r$ the two sets of numbers in the $i$th rows of the two arrays coincide. Clearly, the two $\lambda$-tableaux above are not equivalent. The equivalence classes with respect to this relation are called $\lambda$-tabloids. If $t$ is a $\lambda$-tableau, one usually denotes the $\lambda$-tabloid by $\{ t \}$. As examples, for $\lambda$ as above one has | |
− | + | \begin{equation*} \left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq \end{equation*} | |
− | + | \begin{equation*} \neq \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 2 } & { 3 } & { 9 } & { 6 } \\ { 4 } & { 1 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right). \end{equation*} | |
− | + | Suppose $k$ is a [[Field|field]]. Denote by $M ^ { \lambda }$ the [[Vector space|vector space]] over $k$ with basis equal to the set of $\lambda$-tabloids. Then the symmetric group $S _ { n }$ on $n$ letters (cf. also [[Symmetric group|Symmetric group]]) acts on $M ^ { \lambda }$ (or, more precisely, $M ^ { \lambda }$ is a $k S _ { n }$-module) in a natural way. Indeed, if $\sigma \in S _ { n }$ and $t$ is a $\lambda$-tableau, then $\sigma t $ is the $\lambda$-tableau obtained from $t$ by replacing each number $i$ by $\sigma i$. If one uses the usual cycle presentation of elements in $S _ { n }$, then, e.g., for $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S_{9}$ one has | |
− | + | \begin{equation*} \sigma \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right). \end{equation*} | |
− | + | This action clearly induces an action of $S _ { n }$ on $\lambda$-tabloids and this gives the desired module structure on $M ^ { \lambda }$. | |
− | + | If, again, $t$ is a $\lambda$-tableau, then one sets | |
− | + | \begin{equation*} e _ { t } = \sum _ { \pi } \operatorname { sgn } ( \pi ) \{ \pi t \}, \end{equation*} | |
− | + | where the sum runs over the $\pi \in S _ { n }$ that leave the set of numbers in each column in $t$ stable. Here, $\operatorname { sgn } ( \pi )$ is the sign of $\pi$. | |
− | + | The Specht module associated to $\lambda$ is defined as the submodule | |
− | + | \begin{equation*} S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t a \lambda \square \text { tableau } \} \end{equation*} | |
− | + | of $M ^ { \lambda }$. Clearly, $S ^ { \lambda }$ is invariant under the action of $S _ { n }$. (In fact, $\sigma e _ { t } = e _ { \sigma t}$ for all $\sigma \in S _ { n }$ and all $\lambda$-tableau $t$.) | |
− | is a | + | Specht modules were introduced in 1935 by W. Specht [[#References|[a5]]]. Their importance in the representation theory for symmetric groups (cf. also [[Representation of the symmetric groups|Representation of the symmetric groups]]) comes from the fact that when $k$ contains $\mathbf{Q}$, then each $S ^ { \lambda }$ is a simple $k S _ { n }$-module. Moreover, the set |
− | + | \begin{equation*} \left\{ S ^ { \lambda } : \lambda \text { a partition of } n \right\} \end{equation*} | |
− | + | is a full set of simple $k S _ { n }$-modules. | |
− | + | When the characteristic of $k$ is $p > 0$, then the Specht modules are no longer always simple. However, they still play an important role in the classification of simple $k S _ { n }$-modules. Namely, it turns out that when $\lambda$ is $p$-regular (i.e. no $p$ parts of $\lambda$ are equal), then $S ^ { \lambda }$ has a unique simple quotient $D ^ { \lambda }$ and the set | |
− | + | \begin{equation*} \{ D ^ { \lambda } : \lambda \text { a $p\square$ regular partition of } n\} \end{equation*} | |
− | + | constitutes a full set of simple $k S _ { n }$-modules. It is a major open problem (1999) to determine the dimensions of these modules. | |
− | + | It is possible to give a (characteristic-free) natural basis for $S ^ { \lambda }$. This is sometimes referred to as the Specht basis. In the notation above, it is given by | |
− | + | <table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020096.png"/></td> </tr></table> | |
− | The representation theory for symmetric groups is intimately related to the corresponding theory for general linear groups (Schur duality). Under this correspondence, Specht modules play the same role for | + | Here, a $\lambda$-tableau $t$ is called standard if the numbers occurring in $t$ are increasing along each row and down each column. |
+ | |||
+ | An immediate consequence is that the dimension of $S ^ { \lambda }$ equals the number of standard $\lambda$-tableaux. For various formulas for this number (as well as many further properties of Specht modules) see [[#References|[a2]]] and [[#References|[a3]]]. | ||
+ | |||
+ | The representation theory for symmetric groups is intimately related to the corresponding theory for general linear groups (Schur duality). Under this correspondence, Specht modules play the same role for $S _ { n }$ as do the Weyl modules for $\operatorname { GL} _ { n }$, see e.g. [[#References|[a1]]] and [[Weyl module|Weyl module]]. For a recent result exploring this correspondence in characteristic $p > 0$, see [[#References|[a4]]]. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> J.A. Green, "Polynomial representations of $GL_n$" , ''Lecture Notes Math.'' , '''830''' , Springer (1980)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> G.D. James, "The representation theory of the symmetric groups" , ''Lecture Notes Math.'' , '''682''' , Springer (1978)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> G.D. James, A. Kerber, "The representation theory of the symmetric group" , ''Encycl. Math. Appl.'' , '''16''' , Addison-Wesley (1981)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> O. Mathieu, "On the dimension of some modular irreducible representations of the symmetric group" ''Lett. Math. Phys.'' , '''38''' (1996) pp. 23–32</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> W. Specht, "Die irreduziblen Darstellungen der symmetrischen Gruppe" ''Math. Z.'' , '''39''' (1935) pp. 696–711</td></tr></table> |
Revision as of 17:01, 1 July 2020
Let $n \in \mathbf N$ and suppose $\lambda$ is a (proper) partition of $n$. This means that $\lambda = ( \lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0 )$, where each $\lambda _ { i } \in \bf Z$ and $\sum _ { i } \lambda _ { i } = n$. If $r$ is maximal with $\lambda _ { r } > 0$, then one says that $\lambda$ is a partition of $n$ into $r$ parts.
A $\lambda$-tableau (sometimes called a Young tableau associated with $\lambda$) is an array consisting of the numbers $1 , \dots , n$ listed in $r$ rows with exactly $\lambda _ { i }$ numbers occurring in the $i$th row, $ i = 1 , \ldots , r$. If, for instance, $n = 9$ and $\lambda = ( 4,3,1,1 )$, then the following arrays are examples of $\lambda$-tableaux:
\begin{equation*} \left. \begin{array} { l l l l l l l l l } { 1 } & { 2 } & { 3 } & { 4 } & { } & { 9 } & { 2 } & { 3 } & { 6 } \\ { 5 } & { 6 } & { 7 } & { \square } & { \text { and } } & { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } & { } & { 5 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } & { } & { 8 } & { \square } & { \square } & { \square } \end{array} \right. \end{equation*}
One says that two $\lambda$-tableaux are equivalent if for each $ i = 1 , \ldots , r$ the two sets of numbers in the $i$th rows of the two arrays coincide. Clearly, the two $\lambda$-tableaux above are not equivalent. The equivalence classes with respect to this relation are called $\lambda$-tabloids. If $t$ is a $\lambda$-tableau, one usually denotes the $\lambda$-tabloid by $\{ t \}$. As examples, for $\lambda$ as above one has
\begin{equation*} \left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq \end{equation*}
\begin{equation*} \neq \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 2 } & { 3 } & { 9 } & { 6 } \\ { 4 } & { 1 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right). \end{equation*}
Suppose $k$ is a field. Denote by $M ^ { \lambda }$ the vector space over $k$ with basis equal to the set of $\lambda$-tabloids. Then the symmetric group $S _ { n }$ on $n$ letters (cf. also Symmetric group) acts on $M ^ { \lambda }$ (or, more precisely, $M ^ { \lambda }$ is a $k S _ { n }$-module) in a natural way. Indeed, if $\sigma \in S _ { n }$ and $t$ is a $\lambda$-tableau, then $\sigma t $ is the $\lambda$-tableau obtained from $t$ by replacing each number $i$ by $\sigma i$. If one uses the usual cycle presentation of elements in $S _ { n }$, then, e.g., for $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S_{9}$ one has
\begin{equation*} \sigma \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right). \end{equation*}
This action clearly induces an action of $S _ { n }$ on $\lambda$-tabloids and this gives the desired module structure on $M ^ { \lambda }$.
If, again, $t$ is a $\lambda$-tableau, then one sets
\begin{equation*} e _ { t } = \sum _ { \pi } \operatorname { sgn } ( \pi ) \{ \pi t \}, \end{equation*}
where the sum runs over the $\pi \in S _ { n }$ that leave the set of numbers in each column in $t$ stable. Here, $\operatorname { sgn } ( \pi )$ is the sign of $\pi$.
The Specht module associated to $\lambda$ is defined as the submodule
\begin{equation*} S ^ { \lambda } = \operatorname { span } \{ e _ { t } : t a \lambda \square \text { tableau } \} \end{equation*}
of $M ^ { \lambda }$. Clearly, $S ^ { \lambda }$ is invariant under the action of $S _ { n }$. (In fact, $\sigma e _ { t } = e _ { \sigma t}$ for all $\sigma \in S _ { n }$ and all $\lambda$-tableau $t$.)
Specht modules were introduced in 1935 by W. Specht [a5]. Their importance in the representation theory for symmetric groups (cf. also Representation of the symmetric groups) comes from the fact that when $k$ contains $\mathbf{Q}$, then each $S ^ { \lambda }$ is a simple $k S _ { n }$-module. Moreover, the set
\begin{equation*} \left\{ S ^ { \lambda } : \lambda \text { a partition of } n \right\} \end{equation*}
is a full set of simple $k S _ { n }$-modules.
When the characteristic of $k$ is $p > 0$, then the Specht modules are no longer always simple. However, they still play an important role in the classification of simple $k S _ { n }$-modules. Namely, it turns out that when $\lambda$ is $p$-regular (i.e. no $p$ parts of $\lambda$ are equal), then $S ^ { \lambda }$ has a unique simple quotient $D ^ { \lambda }$ and the set
\begin{equation*} \{ D ^ { \lambda } : \lambda \text { a '"`UNIQ-MathJax82-QINU`"' regular partition of } n\} \end{equation*}
constitutes a full set of simple $k S _ { n }$-modules. It is a major open problem (1999) to determine the dimensions of these modules.
It is possible to give a (characteristic-free) natural basis for $S ^ { \lambda }$. This is sometimes referred to as the Specht basis. In the notation above, it is given by
Here, a $\lambda$-tableau $t$ is called standard if the numbers occurring in $t$ are increasing along each row and down each column.
An immediate consequence is that the dimension of $S ^ { \lambda }$ equals the number of standard $\lambda$-tableaux. For various formulas for this number (as well as many further properties of Specht modules) see [a2] and [a3].
The representation theory for symmetric groups is intimately related to the corresponding theory for general linear groups (Schur duality). Under this correspondence, Specht modules play the same role for $S _ { n }$ as do the Weyl modules for $\operatorname { GL} _ { n }$, see e.g. [a1] and Weyl module. For a recent result exploring this correspondence in characteristic $p > 0$, see [a4].
References
[a1] | J.A. Green, "Polynomial representations of $GL_n$" , Lecture Notes Math. , 830 , Springer (1980) |
[a2] | G.D. James, "The representation theory of the symmetric groups" , Lecture Notes Math. , 682 , Springer (1978) |
[a3] | G.D. James, A. Kerber, "The representation theory of the symmetric group" , Encycl. Math. Appl. , 16 , Addison-Wesley (1981) |
[a4] | O. Mathieu, "On the dimension of some modular irreducible representations of the symmetric group" Lett. Math. Phys. , 38 (1996) pp. 23–32 |
[a5] | W. Specht, "Die irreduziblen Darstellungen der symmetrischen Gruppe" Math. Z. , 39 (1935) pp. 696–711 |
Specht module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Specht_module&oldid=50408