|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200202.png" /> be a real [[Banach space|Banach space]] with dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200203.png" /> and normalized duality mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200204.png" /> (cf. also [[Duality|Duality]]; [[Adjoint space|Adjoint space]]). An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200205.png" /> is called dissipative if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200206.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200207.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200208.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m1200209.png" /> (cf. also [[Dissipative operator|Dissipative operator]]). A dissipative operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002010.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002012.png" />-dissipative if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002013.png" /> is surjective for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002014.png" />. Thus, an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002015.png" /> is dissipative (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002016.png" />-dissipative) if and only if the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002017.png" /> is accretive (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002018.png" />-accretive). For more information, see [[Accretive mapping|Accretive mapping]] and [[M-accretive-operator|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120020/m12002019.png" />-accretive operator]].
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| + | |
| + | Out of 17 formulas, 17 were replaced by TEX code.--> |
| + | |
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | Let $X$ be a real [[Banach space|Banach space]] with dual space $X ^ { * }$ and normalized duality mapping $J$ (cf. also [[Duality|Duality]]; [[Adjoint space|Adjoint space]]). An operator $T : X \supset D ( T ) \rightarrow 2 ^ { X }$ is called dissipative if for every $x , y \in D ( T )$ and every $u \in T x , v \in T y$ there exists a $j \in J ( x - y )$ such that $\langle u - v , j \rangle \leq 0$ (cf. also [[Dissipative operator|Dissipative operator]]). A dissipative operator $T$ is called $m$-dissipative if $\lambda I - T$ is surjective for all $\lambda > 0$. Thus, an operator $T$ is dissipative (respectively, $m$-dissipative) if and only if the operator $- T$ is accretive (respectively, $m$-accretive). For more information, see [[Accretive mapping|Accretive mapping]] and [[M-accretive-operator|$m$-accretive operator]]. |
Latest revision as of 16:58, 1 July 2020
Let $X$ be a real Banach space with dual space $X ^ { * }$ and normalized duality mapping $J$ (cf. also Duality; Adjoint space). An operator $T : X \supset D ( T ) \rightarrow 2 ^ { X }$ is called dissipative if for every $x , y \in D ( T )$ and every $u \in T x , v \in T y$ there exists a $j \in J ( x - y )$ such that $\langle u - v , j \rangle \leq 0$ (cf. also Dissipative operator). A dissipative operator $T$ is called $m$-dissipative if $\lambda I - T$ is surjective for all $\lambda > 0$. Thus, an operator $T$ is dissipative (respectively, $m$-dissipative) if and only if the operator $- T$ is accretive (respectively, $m$-accretive). For more information, see Accretive mapping and $m$-accretive operator.
How to Cite This Entry:
M-dissipative-operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M-dissipative-operator&oldid=50267
This article was adapted from an original article by A.G. Kartsatos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article