Namespaces
Variants
Actions

Difference between revisions of "De la Vallée-Poussin multiple-point problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (AUTOMATIC EDIT (latexlist): Replaced 1 formulas out of 1 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
<!--
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
d0302501.png
+
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
$#A+1 = 23 n = 1
+
was used.
$#C+1 = 23 : ~/encyclopedia/old_files/data/D030/D.0300250 de la Vall\Aeee\AAnPoussin multiple\AAhpoint problem
+
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
 +
Out of 1 formulas, 1 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
{{TEX|auto}}
 
{{TEX|auto}}
 
{{TEX|done}}
 
{{TEX|done}}
Line 27: Line 26:
  
 
where  $  x \in [ a, b] $,  
 
where  $  x \in [ a, b] $,  
$  | y  ^ {(} s) | < + \infty $,  
+
$  | y  ^ {(} s) | &lt; + \infty $,  
 
$  s = 0 \dots n - 1 $,  
 
$  s = 0 \dots n - 1 $,  
 
subject to the conditions
 
subject to the conditions
Line 45: Line 44:
 
l _ {k}  
 
l _ {k}  
 
\frac{h  ^ {k} }{k!}
 
\frac{h  ^ {k} }{k!}
   < 1,
+
   &lt; 1,
 
$$
 
$$
  
Line 66: Line 65:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Ch.J. de la Vallée-Poussin,  "Sur l'equation différentielle linéaire du second ordre. Détermination d'une intégrale par deux valeurs assignées. Extension aux équations d'ordre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025024.png" />"  ''J. Math. Pures Appl.'' , '''8'''  (1929)  pp. 125–144</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Sansone,  "Equazioni differenziali nel campo reale" , '''1''' , Zanichelli  (1948)</TD></TR></table>
+
<table><tr><td valign="top">[1]</td> <td valign="top">  Ch.J. de la Vallée-Poussin,  "Sur l'equation différentielle linéaire du second ordre. Détermination d'une intégrale par deux valeurs assignées. Extension aux équations d'ordre $n$"  ''J. Math. Pures Appl.'' , '''8'''  (1929)  pp. 125–144</td></tr><tr><td valign="top">[2]</td> <td valign="top">  G. Sansone,  "Equazioni differenziali nel campo reale" , '''1''' , Zanichelli  (1948)</td></tr></table>
  
 
====Comments====
 
====Comments====
Line 72: Line 71:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</td></tr></table>

Revision as of 16:57, 1 July 2020


The problem of finding a solution to an ordinary non-linear differential equation of order $ n $,

$$ \tag{1 } y ^ {(} n) = \ f ( x, y, y ^ \prime \dots y ^ {( n - 1) } ) $$

or to a linear equation

$$ \tag{2 } y ^ {(} n) + p _ {1} ( x) y ^ {( n - 1) } + \dots + p _ {n} ( x) y = 0, $$

where $ x \in [ a, b] $, $ | y ^ {(} s) | < + \infty $, $ s = 0 \dots n - 1 $, subject to the conditions

$$ \tag{3 } y ( x _ {i} ) = c _ {i} ,\ \ i = 1 \dots n; \ \ x _ {i} \in [ a, b]. $$

It was shown by Ch.J. de la Vallée-Poussin [1] that if $ p _ {k} ( x) \in C [ a, b] $, $ k = 1 \dots n $, and if the inequality

$$ \tag{4 } \sum _ {k = 1 } ^ { n } l _ {k} \frac{h ^ {k} }{k!} < 1, $$

where $ l _ {k} \geq | p _ {k} ( x) | $, $ x \in [ a, b] $, $ h= b - a $, is met, there exists a unique solution of the problem (2), (3). He also showed that if $ f( x, u _ {1} \dots u _ {n} ) $ is continuous in all its arguments and satisfies a Lipschitz condition with constant $ l _ {k} $ in the variable $ u _ {n+ 1- k } $, $ k = 1 \dots n $, then, if equation (4) is satisfied, there can be only one solution of the problem (1), (3).

The following aspects of the de la Vallée-Poussin multiple point problem are studied: improvement of an estimate of the number $ h $ by changing the coefficients of (4); extension of the class of functions $ p _ {k} ( x) $, $ k= 1 \dots n $, or $ f( x, u _ {1} \dots u _ {n} ) $; and generalization of the conditions (3). A main problem is to prove that the solution exists and that it is unique. As far as the problem (2), (3) is concerned, this is equivalent with the following statement: Any non-trivial solution of equation (2) has at most $ n - 1 $ zeros on $ [ a, b] $( non-oscillation of solutions or separation of zeros).

References

[1] Ch.J. de la Vallée-Poussin, "Sur l'equation différentielle linéaire du second ordre. Détermination d'une intégrale par deux valeurs assignées. Extension aux équations d'ordre $n$" J. Math. Pures Appl. , 8 (1929) pp. 125–144
[2] G. Sansone, "Equazioni differenziali nel campo reale" , 1 , Zanichelli (1948)

Comments

This problem is also known as the multipoint boundary value problem; it is mostly of historical interest. In [a1] an extension of de la Vallée-Poussin's result is given.

References

[a1] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
How to Cite This Entry:
De la Vallée-Poussin multiple-point problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_la_Vall%C3%A9e-Poussin_multiple-point_problem&oldid=50230
This article was adapted from an original article by L.N. Eshukov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article