Namespaces
Variants
Actions

Difference between revisions of "M-dependent-process"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (AUTOMATIC EDIT (latexlist): Replaced 3 formulas out of 3 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
<!--
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
m0620002.png
+
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
$#A+1 = 15 n = 3
+
was used.
$#C+1 = 15 : ~/encyclopedia/old_files/data/M062/M.0602000 \BMI m\EMI\AAhdependent process
+
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
 +
Out of 3 formulas, 3 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
{{TEX|auto}}
 
{{TEX|auto}}
 
{{TEX|done}}
 
{{TEX|done}}
Line 32: Line 31:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.L. O'Brien,  "Scaling transformations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m06200019.png" />-valued sequences"  ''Z. Wahrscheinlichkeitstheorie Verw. Gebiete'' , '''53'''  (1980)  pp. 35–49</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Aaronson,  D. Gilat,  M. Keane,  V. de Valk,  "An algebraic construction of a class of one-dependent processes"  ''Ann. Probab.'' , '''17'''  (1988)  pp. 128–143</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Janson,  "Runs in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m06200020.png" />-dependent sequences"  ''Ann. Probab.'' , '''12'''  (1984)  pp. 805–818</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  G. Haiman,  "Valeurs extrémales de suites stationaires de variable aléatoires <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m06200021.png" />-dépendantes"  ''Ann. Inst. H. Poincaré Sect. B (N.S.)'' , '''17'''  (1981)  pp. 309–330</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  G.L. O'Brien,  "Scaling transformations for $\{ 0,1 \}$-valued sequences"  ''Z. Wahrscheinlichkeitstheorie Verw. Gebiete'' , '''53'''  (1980)  pp. 35–49</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Aaronson,  D. Gilat,  M. Keane,  V. de Valk,  "An algebraic construction of a class of one-dependent processes"  ''Ann. Probab.'' , '''17'''  (1988)  pp. 128–143</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  S. Janson,  "Runs in $m$-dependent sequences"  ''Ann. Probab.'' , '''12'''  (1984)  pp. 805–818</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  G. Haiman,  "Valeurs extrémales de suites stationaires de variable aléatoires $m$-dépendantes"  ''Ann. Inst. H. Poincaré Sect. B (N.S.)'' , '''17'''  (1981)  pp. 309–330</td></tr></table>

Revision as of 16:56, 1 July 2020


A discrete-time stochastic process $ ( X _ {n} ) _ {n \in \mathbf Z } $ is $ m $- dependent if for all $ k $ the joint stochastic variables $ ( X _ {n} ) _ {n \leq k } $ are independent of the joint stochastic variables $ ( X _ {n} ) _ {n \geq k + m + 1 } $.

Such processes arise naturally as limits of rescaling transformations (renormalizations) and (hence) as examples of processes with scaling symmetries [a1]. Examples of $ m $- dependent processes are given by $ ( m + 1 ) $- block factors. These are defined as follows. Let $ ( Z _ {n} ) _ {n \in \mathbf Z } $ be an independent process and $ \phi $ a function of $ m + 1 $ variables; let $ X _ {n} = f ( Z _ {n} \dots Z _ {n+} m ) $; then the $ ( m + 1 ) $- block factor $ X _ {n} $ is an $ m $- dependent process.

There are one-dependent processes which are not $ 2 $- block factors, [a2].

References

[a1] G.L. O'Brien, "Scaling transformations for $\{ 0,1 \}$-valued sequences" Z. Wahrscheinlichkeitstheorie Verw. Gebiete , 53 (1980) pp. 35–49
[a2] J. Aaronson, D. Gilat, M. Keane, V. de Valk, "An algebraic construction of a class of one-dependent processes" Ann. Probab. , 17 (1988) pp. 128–143
[a3] S. Janson, "Runs in $m$-dependent sequences" Ann. Probab. , 12 (1984) pp. 805–818
[a4] G. Haiman, "Valeurs extrémales de suites stationaires de variable aléatoires $m$-dépendantes" Ann. Inst. H. Poincaré Sect. B (N.S.) , 17 (1981) pp. 309–330
How to Cite This Entry:
M-dependent-process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M-dependent-process&oldid=50168