Namespaces
Variants
Actions

Difference between revisions of "Matrix Viète theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (AUTOMATIC EDIT (latexlist): Replaced 18 formulas out of 18 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 18 formulas, 18 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''matrix Vieta theorem''
 
''matrix Vieta theorem''
  
 
The standard (scalar) Viète formulas express the coefficients of an equation
 
The standard (scalar) Viète formulas express the coefficients of an equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201701.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n - 1 } x + a _ { n } = 0 \end{equation}
  
in terms of the roots: up to sign, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201702.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201703.png" />th [[elementary symmetric function]] of the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201704.png" />. See also [[Viète theorem|Viète theorem]].
+
in terms of the roots: up to sign, $a_i$ is the $i$th [[elementary symmetric function]] of the roots $\alpha_{1} , \ldots , \alpha _ { n }$. See also [[Viète theorem|Viète theorem]].
  
 
Consider now a matrix equation
 
Consider now a matrix equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201705.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} X ^ { n } + A _ { 1 } X ^ { n - 1 } + \ldots + A _ { n - 1 } X + A _ { n } = 0, \end{equation}
  
where the solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201706.png" /> and coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201707.png" /> are square complex matrices. A set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201708.png" /> square matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201709.png" /> of size <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017010.png" /> is called independent if the block [[Vandermonde determinant|Vandermonde determinant]]
+
where the solutions $X$ and coefficients $A_i$ are square complex matrices. A set of $n$ square matrices $X _ { 1 } , \ldots , X _ { n }$ of size $m \times m$ is called independent if the block [[Vandermonde determinant|Vandermonde determinant]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017011.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { det } \left( \begin{array} { c c c } { I } &amp; { \ldots } &amp; { I } \\ { X _ { 1 } } &amp; { \ldots } &amp; { X _ { n } } \\ { \vdots } &amp; { \ldots } &amp; { \vdots } \\ { X _ { 1 } ^ { n - 1 } } &amp; { \ldots } &amp; { X _ { n } ^ { n - 1 } } \end{array} \right) \end{equation*}
  
does not vanish. The matrix Viète theorem gives formulas for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017012.png" /> in terms of quasi-determinants, [[#References|[a3]]], [[#References|[a4]]], involving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017013.png" /> independent solutions of (a2), [[#References|[a1]]], [[#References|[a2]]]. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017014.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017015.png" /> independent solutions of (a2), then
+
does not vanish. The matrix Viète theorem gives formulas for $A_i$ in terms of quasi-determinants, [[#References|[a3]]], [[#References|[a4]]], involving $n$ independent solutions of (a2), [[#References|[a1]]], [[#References|[a2]]]. In particular, if $X _ { 1 } , \ldots , X _ { n }$ are $n$ independent solutions of (a2), then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017016.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } ), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017017.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )= \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017018.png" /></td> </tr></table>
+
\begin{equation*} = \operatorname { det } ( 1 + A _ { 1 } \lambda + \ldots + A _ { n } \lambda ^ { n } ). \end{equation*}
  
 
This theorem generalizes to the case of equations in an arbitrary associative ring (cf. also [[Associative rings and algebras|Associative rings and algebras]]), with an adequate notion of trace and determinant, see [[#References|[a1]]], [[#References|[a2]]].
 
This theorem generalizes to the case of equations in an arbitrary associative ring (cf. also [[Associative rings and algebras|Associative rings and algebras]]), with an adequate notion of trace and determinant, see [[#References|[a1]]], [[#References|[a2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Connes,  A. Schwarz,  "Matrix Vieta theorem revisited"  ''Lett. Math. Phys.'' , '''39''' :  4  (1997)  pp. 349–353</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Fuchs,  A. Schwarz,  "Matrix Vieta theorem"  ''Amer. Math. Soc. Transl. (2)'' , '''169'''  (1995)  pp. 15–22</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.M. Gel'fand,  D. Krob,  A. Lascoux,  B. Leclerc,  V.S. Redakh,  J.Y. Thibon,  "Noncomutative symmetric functions"  ''Adv. Math.'' , '''112'''  (1995)  pp. 218–348</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.M. Gel'fand,  V.S. Redakh,  "A theory of noncommutative determinants and characteristic functions of graphs I"  ''Publ. LACIM (Univ. Quebec)'' , '''14'''  pp. 1–26</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. Connes,  A. Schwarz,  "Matrix Vieta theorem revisited"  ''Lett. Math. Phys.'' , '''39''' :  4  (1997)  pp. 349–353</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  D. Fuchs,  A. Schwarz,  "Matrix Vieta theorem"  ''Amer. Math. Soc. Transl. (2)'' , '''169'''  (1995)  pp. 15–22</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  I.M. Gel'fand,  D. Krob,  A. Lascoux,  B. Leclerc,  V.S. Redakh,  J.Y. Thibon,  "Noncomutative symmetric functions"  ''Adv. Math.'' , '''112'''  (1995)  pp. 218–348</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  I.M. Gel'fand,  V.S. Redakh,  "A theory of noncommutative determinants and characteristic functions of graphs I"  ''Publ. LACIM (Univ. Quebec)'' , '''14'''  pp. 1–26</td></tr></table>

Revision as of 16:56, 1 July 2020

matrix Vieta theorem

The standard (scalar) Viète formulas express the coefficients of an equation

\begin{equation} \tag{a1} x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n - 1 } x + a _ { n } = 0 \end{equation}

in terms of the roots: up to sign, $a_i$ is the $i$th elementary symmetric function of the roots $\alpha_{1} , \ldots , \alpha _ { n }$. See also Viète theorem.

Consider now a matrix equation

\begin{equation} \tag{a2} X ^ { n } + A _ { 1 } X ^ { n - 1 } + \ldots + A _ { n - 1 } X + A _ { n } = 0, \end{equation}

where the solutions $X$ and coefficients $A_i$ are square complex matrices. A set of $n$ square matrices $X _ { 1 } , \ldots , X _ { n }$ of size $m \times m$ is called independent if the block Vandermonde determinant

\begin{equation*} \operatorname { det } \left( \begin{array} { c c c } { I } & { \ldots } & { I } \\ { X _ { 1 } } & { \ldots } & { X _ { n } } \\ { \vdots } & { \ldots } & { \vdots } \\ { X _ { 1 } ^ { n - 1 } } & { \ldots } & { X _ { n } ^ { n - 1 } } \end{array} \right) \end{equation*}

does not vanish. The matrix Viète theorem gives formulas for $A_i$ in terms of quasi-determinants, [a3], [a4], involving $n$ independent solutions of (a2), [a1], [a2]. In particular, if $X _ { 1 } , \ldots , X _ { n }$ are $n$ independent solutions of (a2), then

\begin{equation*} \operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } ), \end{equation*}

\begin{equation*} \operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )= \end{equation*}

\begin{equation*} = \operatorname { det } ( 1 + A _ { 1 } \lambda + \ldots + A _ { n } \lambda ^ { n } ). \end{equation*}

This theorem generalizes to the case of equations in an arbitrary associative ring (cf. also Associative rings and algebras), with an adequate notion of trace and determinant, see [a1], [a2].

References

[a1] A. Connes, A. Schwarz, "Matrix Vieta theorem revisited" Lett. Math. Phys. , 39 : 4 (1997) pp. 349–353
[a2] D. Fuchs, A. Schwarz, "Matrix Vieta theorem" Amer. Math. Soc. Transl. (2) , 169 (1995) pp. 15–22
[a3] I.M. Gel'fand, D. Krob, A. Lascoux, B. Leclerc, V.S. Redakh, J.Y. Thibon, "Noncomutative symmetric functions" Adv. Math. , 112 (1995) pp. 218–348
[a4] I.M. Gel'fand, V.S. Redakh, "A theory of noncommutative determinants and characteristic functions of graphs I" Publ. LACIM (Univ. Quebec) , 14 pp. 1–26
How to Cite This Entry:
Matrix Viète theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_Vi%C3%A8te_theorem&oldid=50161
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article