Namespaces
Variants
Actions

Difference between revisions of "Weyl-Otsuki space"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Weyl–Otsuki space to Weyl-Otsuki space: ascii title)
m (AUTOMATIC EDIT (latexlist): Replaced 43 formulas out of 49 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 49 formulas, 43 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|partial}}
 
''Otsuki–Weyl space''
 
''Otsuki–Weyl space''
  
An Otsuki space [[#References|[a6]]], [[#References|[a7]]] is a [[Manifold|manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201001.png" /> endowed with two different linear connections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201002.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201003.png" /> (cf. also [[Connections on a manifold|Connections on a manifold]]) and a non-degenerate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201004.png" /> tensor field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201005.png" /> of constant rank (cf. also [[Tensor analysis|tensor analysis]]), where the connection coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201006.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201007.png" />, are used in the computation of the contravariant, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201008.png" /> in the computation of the covariant, components of the invariant (covariant) differential of a tensor (vector). For a tensor field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201009.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010010.png" />, the invariant differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010011.png" /> and the covariant differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010012.png" /> have the following forms
+
An Otsuki space [[#References|[a6]]], [[#References|[a7]]] is a [[Manifold|manifold]] $M$ endowed with two different linear connections $\square ^ { '' } \Gamma$ and $\square ^ { \prime } \Gamma$ (cf. also [[Connections on a manifold|Connections on a manifold]]) and a non-degenerate $( 1,1 )$ tensor field $P$ of constant rank (cf. also [[Tensor analysis|tensor analysis]]), where the connection coefficients $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$, $x \in M$, are used in the computation of the contravariant, and the $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ in the computation of the covariant, components of the invariant (covariant) differential of a tensor (vector). For a tensor field $T$ of type $( 1,1 )$, the invariant differential $DT$ and the covariant differential $\nabla T$ have the following forms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010013.png" /></td> </tr></table>
+
\begin{equation*} D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010014.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010014.png"/></td> </tr></table>
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010016.png" /> are connected by the relation
+
$\square ^ { \prime } \Gamma$ and $\square ^ { '' } \Gamma$ are connected by the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010017.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010017.png"/></td> </tr></table>
  
Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010019.png" /> determine <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010020.png" />. T. Otsuki calls these a general connection. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010021.png" /> one obtains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010022.png" /> and the usual invariant differential.
+
Thus, $\square ^ { '' } \Gamma$ and $P$ determine $\square ^ { \prime } \Gamma$. T. Otsuki calls these a general connection. For $P ^ { i } _ { r } = \delta ^ { i }_r$ one obtains $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ and the usual invariant differential.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010023.png" /> is endowed also with a [[Riemannian metric|Riemannian metric]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010024.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010025.png" /> may be the [[Christoffel symbol|Christoffel symbol]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010026.png" />.
+
If $M$ is endowed also with a [[Riemannian metric|Riemannian metric]] $g$, then $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$ may be the [[Christoffel symbol|Christoffel symbol]] $\{ \square _ { j k } ^ { i } \}$.
  
In a Weyl space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010027.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png" />. A Weyl–Otsuki space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010029.png" /> [[#References|[a1]]] is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010030.png" /> endowed with an Otsuki connection. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010031.png" /> are defined here as
+
In a Weyl space $W ^ { n } = ( M , g , \gamma )$ one has $\nabla _ { i g j k } = \gamma _ { i  g  j k }$. A Weyl–Otsuki space $W - O _ { n }$ [[#References|[a1]]] is a $W ^ { m }$ endowed with an Otsuki connection. The $\square ^ { \prime \prime } \Gamma _ { r k } ^ { t }$ are defined here as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010032.png" /></td> </tr></table>
+
\begin{equation*} \square ^ { \prime \prime } \Gamma _ { r k } ^ { t } = \{ \square _ { r k } ^ { t } \} - \frac { 1 } { 2 } g ^ { t s } ( \gamma _ { k } m _ { r s } + \gamma _ { r } m _ { s k } - \gamma _ { s } m _ { r k } ), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010033.png" /></td> </tr></table>
+
\begin{equation*} m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010034.png" /> is the inverse of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010035.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010036.png" /> spaces were studied mainly by A. Moór [[#References|[a2]]], [[#References|[a3]]].
+
where $Q$ is the inverse of $P$. $W - O _ { n }$ spaces were studied mainly by A. Moór [[#References|[a2]]], [[#References|[a3]]].
  
He extended the Otsuki connection also to affine and metrical line-element spaces, obtaining Finsler–Otsuki spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010037.png" /> [[#References|[a4]]], [[#References|[a5]]] with invariant differential
+
He extended the Otsuki connection also to affine and metrical line-element spaces, obtaining Finsler–Otsuki spaces $F - O _ { n }$ [[#References|[a4]]], [[#References|[a5]]] with invariant differential
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010038.png" /></td> </tr></table>
+
\begin{equation*} D T_j^i = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010039.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010039.png"/></td> </tr></table>
  
Here, all objects depend on the line-element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010040.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010044.png" /> are homogeneous of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010045.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010046.png" /> is a tensor.
+
Here, all objects depend on the line-element $( x , \dot { x } )$, the $T$, $P$, $\square ^ { \prime } \Gamma$, $\square ^ { '' } \Gamma$ are homogeneous of order $O$, and $C$ is a tensor.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Moór,  "Otsukische Übertragung mit rekurrenter Maß tensor"  ''Acta Sci. Math.'' , '''40'''  (1978)  pp. 129–142</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Moór,  "Über verschiedene geodätische Abweichungen in Weyl–Otsukischen Räumen"  ''Publ. Math. Debrecen'' , '''28'''  (1981)  pp. 247–258</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A. Moór,  "Über Transformationsgruppen in Weyl–Otsukischen Räumen"  ''Publ. Math. Debrecen'' , '''29'''  (1982)  pp. 241–250</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Moór,  "Über die Begründung von Finsler–Otschukischen Räumen und ihre Dualität"  ''Tensor N.S.'' , '''37'''  (1982)  pp. 121–129</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Moór,  "Über spezielle Finsler–Otsukische Räume"  ''Publ. Math. Debrecen'' , '''31'''  (1984)  pp. 185–196</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Otsuki,  "On general connections. I"  ''Math. J. Okayama Univ.'' , '''9'''  (1959-60)  pp. 99–164</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  T. Otsuki,  "On metric general connections"  ''Proc. Japan Acad.'' , '''37'''  (1961)  pp. 183–188</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. Moór,  "Otsukische Übertragung mit rekurrenter Maß tensor"  ''Acta Sci. Math.'' , '''40'''  (1978)  pp. 129–142</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  A. Moór,  "Über verschiedene geodätische Abweichungen in Weyl–Otsukischen Räumen"  ''Publ. Math. Debrecen'' , '''28'''  (1981)  pp. 247–258</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  A. Moór,  "Über Transformationsgruppen in Weyl–Otsukischen Räumen"  ''Publ. Math. Debrecen'' , '''29'''  (1982)  pp. 241–250</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  A. Moór,  "Über die Begründung von Finsler–Otschukischen Räumen und ihre Dualität"  ''Tensor N.S.'' , '''37'''  (1982)  pp. 121–129</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  A. Moór,  "Über spezielle Finsler–Otsukische Räume"  ''Publ. Math. Debrecen'' , '''31'''  (1984)  pp. 185–196</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  T. Otsuki,  "On general connections. I"  ''Math. J. Okayama Univ.'' , '''9'''  (1959-60)  pp. 99–164</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  T. Otsuki,  "On metric general connections"  ''Proc. Japan Acad.'' , '''37'''  (1961)  pp. 183–188</td></tr></table>

Revision as of 15:19, 1 July 2020

Otsuki–Weyl space

An Otsuki space [a6], [a7] is a manifold $M$ endowed with two different linear connections $\square ^ { '' } \Gamma$ and $\square ^ { \prime } \Gamma$ (cf. also Connections on a manifold) and a non-degenerate $( 1,1 )$ tensor field $P$ of constant rank (cf. also tensor analysis), where the connection coefficients $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$, $x \in M$, are used in the computation of the contravariant, and the $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ in the computation of the covariant, components of the invariant (covariant) differential of a tensor (vector). For a tensor field $T$ of type $( 1,1 )$, the invariant differential $DT$ and the covariant differential $\nabla T$ have the following forms

\begin{equation*} D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } = \end{equation*}

$\square ^ { \prime } \Gamma$ and $\square ^ { '' } \Gamma$ are connected by the relation

Thus, $\square ^ { '' } \Gamma$ and $P$ determine $\square ^ { \prime } \Gamma$. T. Otsuki calls these a general connection. For $P ^ { i } _ { r } = \delta ^ { i }_r$ one obtains $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ and the usual invariant differential.

If $M$ is endowed also with a Riemannian metric $g$, then $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$ may be the Christoffel symbol $\{ \square _ { j k } ^ { i } \}$.

In a Weyl space $W ^ { n } = ( M , g , \gamma )$ one has $\nabla _ { i g j k } = \gamma _ { i g j k }$. A Weyl–Otsuki space $W - O _ { n }$ [a1] is a $W ^ { m }$ endowed with an Otsuki connection. The $\square ^ { \prime \prime } \Gamma _ { r k } ^ { t }$ are defined here as

\begin{equation*} \square ^ { \prime \prime } \Gamma _ { r k } ^ { t } = \{ \square _ { r k } ^ { t } \} - \frac { 1 } { 2 } g ^ { t s } ( \gamma _ { k } m _ { r s } + \gamma _ { r } m _ { s k } - \gamma _ { s } m _ { r k } ), \end{equation*}

\begin{equation*} m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j }, \end{equation*}

where $Q$ is the inverse of $P$. $W - O _ { n }$ spaces were studied mainly by A. Moór [a2], [a3].

He extended the Otsuki connection also to affine and metrical line-element spaces, obtaining Finsler–Otsuki spaces $F - O _ { n }$ [a4], [a5] with invariant differential

\begin{equation*} D T_j^i = \end{equation*}

Here, all objects depend on the line-element $( x , \dot { x } )$, the $T$, $P$, $\square ^ { \prime } \Gamma$, $\square ^ { '' } \Gamma$ are homogeneous of order $O$, and $C$ is a tensor.

References

[a1] A. Moór, "Otsukische Übertragung mit rekurrenter Maß tensor" Acta Sci. Math. , 40 (1978) pp. 129–142
[a2] A. Moór, "Über verschiedene geodätische Abweichungen in Weyl–Otsukischen Räumen" Publ. Math. Debrecen , 28 (1981) pp. 247–258
[a3] A. Moór, "Über Transformationsgruppen in Weyl–Otsukischen Räumen" Publ. Math. Debrecen , 29 (1982) pp. 241–250
[a4] A. Moór, "Über die Begründung von Finsler–Otschukischen Räumen und ihre Dualität" Tensor N.S. , 37 (1982) pp. 121–129
[a5] A. Moór, "Über spezielle Finsler–Otsukische Räume" Publ. Math. Debrecen , 31 (1984) pp. 185–196
[a6] T. Otsuki, "On general connections. I" Math. J. Okayama Univ. , 9 (1959-60) pp. 99–164
[a7] T. Otsuki, "On metric general connections" Proc. Japan Acad. , 37 (1961) pp. 183–188
How to Cite This Entry:
Weyl-Otsuki space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weyl-Otsuki_space&oldid=49873
This article was adapted from an original article by L. Tamássy (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article