Difference between revisions of "Diagram"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) (tex done, several typos corrected) |
||
Line 20: | Line 20: | ||
for which | for which | ||
− | $$ | + | $$ D (I) \subset \mathop{\rm Ob} (C) ,\ D (U) \subset \mathop{\rm Mor} (C) , $$ |
− | D ( I) \subset | ||
− | $$ | ||
− | and $ D ( u) \in | + | and $ D (u) \in {\mathop{\rm Hom}\nolimits} ( D (i) , D (j) ) $ |
if the edge $ u \in U $ | if the edge $ u \in U $ | ||
has source (origin) $ i $ | has source (origin) $ i $ | ||
Line 36: | Line 34: | ||
with source $ i $ | with source $ i $ | ||
and target $ j $, | and target $ j $, | ||
− | i.e. a non-empty finite sequence of edges in which the source of each edge coincides with the target of the preceding one; also, let $ D ( \phi ) : D ( i) \rightarrow D ( j) $ | + | i.e. a non-empty finite sequence of edges in which the source of each edge coincides with the target of the preceding one; also, let $ D ( \phi ) : D (i) \mathop \rightarrow \limits D (j) $ |
denote the composition of morphisms | denote the composition of morphisms | ||
− | $$ | + | $$ D (u _ {n} ) \circ \dots \circ D (u _ {1} ) . $$ |
− | D ( u _ {n} ) \circ \dots \circ D ( u _ {1} ) . | ||
− | $$ | ||
The diagram $ D $ | The diagram $ D $ | ||
− | is said to be commutative if $ D ( \phi ) = D ( \phi | + | is said to be commutative if $ D ( \phi ) = D ( \phi ^ \prime ) $ |
for any two oriented chains $ \phi $ | for any two oriented chains $ \phi $ | ||
− | and $ \phi | + | and $ \phi ^ \prime $ |
with identical source and target. | with identical source and target. | ||
The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form | The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form | ||
− | $$ | + | $$ \mathop \cdot \limits _ {i _ {1}} \mathop \rightarrow \limits ^ {u _ {1}} \mathop \cdot \limits _ {i _ {2}} \mathop \rightarrow \limits \dots \mathop \rightarrow \limits \mathop \cdot \limits _ {i _ {n-1}} \mathop \rightarrow \limits ^ {u _ {n-1}} \mathop \cdot \limits _ {i _ {n}} . $$ |
− | \cdot _ { i _ {1} } \rightarrow ^ | ||
− | \rightarrow ^ | ||
− | $$ | ||
The corresponding diagram is represented as follows: | The corresponding diagram is represented as follows: | ||
− | $$ | + | $$ A _ {1} \mathop \rightarrow \limits ^ {f _ {1}} A _ {2} \mathop \rightarrow \limits \dots \mathop \rightarrow \limits A _ {n-1} \mathop \rightarrow \limits ^ {f _ {n-1}} A _ {n} , $$ |
− | A _ {1} \rightarrow ^ | ||
− | $$ | ||
where the $ A _ {k} = D ( i _ {k} ) $ | where the $ A _ {k} = D ( i _ {k} ) $ | ||
Line 70: | Line 61: | ||
corresponds to the graph | corresponds to the graph | ||
− | $$ | + | $$ \begin{array}{lcr} {i _ {1}} \mathop \cdot \limits &\mathop \rightarrow \limits ^ {u _ {1}} &\mathop \cdot \limits {i _ {2}} \\ {} _ {u _ {3}} \searrow &{} &\swarrow _ {u _ {2}} \\ {} &\mathop \cdot \limits _ {i _ {3}} &{} \\ \end{array} $$ |
− | |||
− | \begin{array}{lcr} | ||
− | { | ||
− | {} _ {u _ { | ||
− | i _ { | ||
− | \end{array} | ||
− | |||
− | $$ | ||
and is represented as follows: | and is represented as follows: | ||
− | $$ | + | $$ \begin{array}{lcr} A _ {1} &\mathop \rightarrow \limits ^ {f _ {1}} &A _ {2} \\ {} _ {f _ {3}} \searrow &{} &\swarrow _ {f _ {2}} \\ {} &A _ {3} &{} \\ \end{array} $$ |
− | |||
− | \begin{array}{lcr} | ||
− | A _ {1} &\rightarrow ^ | ||
− | {} _ {f _ {3} | ||
− | {} &A _ {3} &{} \\ | ||
− | \end{array} | ||
− | |||
− | $$ | ||
Commutativity of this diagram means that $ f _ {3} = f _ {2} \circ f _ {1} $. | Commutativity of this diagram means that $ f _ {3} = f _ {2} \circ f _ {1} $. | ||
Line 96: | Line 71: | ||
A square diagram corresponds to the graph | A square diagram corresponds to the graph | ||
− | $$ | + | $$ \begin{array}{rcl} i _ {1} \mathop \cdot \limits &\mathop \rightarrow \limits ^ {u _ {1}} &\mathop \cdot \limits i _ {2} \\ \scriptsize {u _ {4}} \downarrow &{} &\downarrow \scriptsize {u _ {2}} \\ i _ {4} \mathop \cdot \limits &\mathop \rightarrow \limits _ {u _ {3}} &\mathop \cdot \limits i _ {3} \\ \end{array} $$ |
− | |||
− | \begin{array}{ | ||
− | i _ {1} &\ | ||
− | |||
− | i _ {4} | ||
− | \end{array} | ||
− | |||
− | $$ | ||
and is represented as follows: | and is represented as follows: | ||
− | $$ | + | $$ \begin{array}{lcl} A _ {1} &\mathop \rightarrow \limits ^ {f _ {1}} &A _ {2} \\ \scriptsize {f _ {4}} \downarrow &{} &\downarrow \scriptsize {f _ {2}} \\ A _ {4} &\mathop \rightarrow \limits _ {f _ {3}} &A _ {3} \\ \end{array} $$ |
− | |||
− | \begin{array}{lcl} | ||
− | A _ {1} &\rightarrow ^ | ||
− | |||
− | A _ {4} & \mathop \rightarrow \limits _ | ||
− | \end{array} | ||
− | |||
− | $$ | ||
Commutativity of this diagram means that $ f _ {2} \circ f _ {1} = f _ {3} \circ f _ {4} $. | Commutativity of this diagram means that $ f _ {2} \circ f _ {1} = f _ {3} \circ f _ {4} $. | ||
Line 123: | Line 82: | ||
forms a category. A morphism of a diagram $ D $ | forms a category. A morphism of a diagram $ D $ | ||
into a diagram $ D _ {1} $ | into a diagram $ D _ {1} $ | ||
− | is taken to be a family of morphisms $ \nu _ {i} : D ( i) \rightarrow D _ {1} ( i) $, | + | is taken to be a family of morphisms $ \nu _ {i} : D (i) \mathop \rightarrow \limits D _ {1} (i) $, |
where $ i $ | where $ i $ | ||
runs through the set of vertices of $ \Gamma $, | runs through the set of vertices of $ \Gamma $, | ||
Line 129: | Line 88: | ||
with source $ i $ | with source $ i $ | ||
and target $ j $ | and target $ j $ | ||
− | the condition $ D _ {1} ( u) \circ \nu _ {i} = \nu _ {j} \circ D ( u) $ | + | the condition $ D _ {1} (u) \circ \nu _ {i} = \nu _ {j} \circ D (u) $ |
is met. In particular, one may speak of isomorphic diagrams. The graph $ \Gamma $ | is met. In particular, one may speak of isomorphic diagrams. The graph $ \Gamma $ | ||
is sometimes referred to as the scheme of a diagram in $ C $. | is sometimes referred to as the scheme of a diagram in $ C $. |
Revision as of 10:00, 21 June 2020
in a category $ C $
A mapping $ D $ of an oriented graph $ \Gamma $ with set of vertices $ I $ and set of edges $ U $ into the category $ C $ for which
$$ D (I) \subset \mathop{\rm Ob} (C) ,\ D (U) \subset \mathop{\rm Mor} (C) , $$
and $ D (u) \in {\mathop{\rm Hom}\nolimits} ( D (i) , D (j) ) $ if the edge $ u \in U $ has source (origin) $ i $ and target (end) $ j $. The concept of a diagram in $ C $ may also be defined as the image of the mapping $ D $, in order to obtain a better visualization of diagrams.
Let $ \phi = ( u _ {1} \dots u _ {n} ) $ be an oriented chain of the graph $ \Gamma $ with source $ i $ and target $ j $, i.e. a non-empty finite sequence of edges in which the source of each edge coincides with the target of the preceding one; also, let $ D ( \phi ) : D (i) \mathop \rightarrow \limits D (j) $ denote the composition of morphisms
$$ D (u _ {n} ) \circ \dots \circ D (u _ {1} ) . $$
The diagram $ D $ is said to be commutative if $ D ( \phi ) = D ( \phi ^ \prime ) $ for any two oriented chains $ \phi $ and $ \phi ^ \prime $ with identical source and target.
The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form
$$ \mathop \cdot \limits _ {i _ {1}} \mathop \rightarrow \limits ^ {u _ {1}} \mathop \cdot \limits _ {i _ {2}} \mathop \rightarrow \limits \dots \mathop \rightarrow \limits \mathop \cdot \limits _ {i _ {n-1}} \mathop \rightarrow \limits ^ {u _ {n-1}} \mathop \cdot \limits _ {i _ {n}} . $$
The corresponding diagram is represented as follows:
$$ A _ {1} \mathop \rightarrow \limits ^ {f _ {1}} A _ {2} \mathop \rightarrow \limits \dots \mathop \rightarrow \limits A _ {n-1} \mathop \rightarrow \limits ^ {f _ {n-1}} A _ {n} , $$
where the $ A _ {k} = D ( i _ {k} ) $ are objects in the category $ C $, while the $ f _ {k} = D ( u _ {k} ) $ are morphisms in this category.
A triangular diagram in a category $ C $ corresponds to the graph
$$ \begin{array}{lcr} {i _ {1}} \mathop \cdot \limits &\mathop \rightarrow \limits ^ {u _ {1}} &\mathop \cdot \limits {i _ {2}} \\ {} _ {u _ {3}} \searrow &{} &\swarrow _ {u _ {2}} \\ {} &\mathop \cdot \limits _ {i _ {3}} &{} \\ \end{array} $$
and is represented as follows:
$$ \begin{array}{lcr} A _ {1} &\mathop \rightarrow \limits ^ {f _ {1}} &A _ {2} \\ {} _ {f _ {3}} \searrow &{} &\swarrow _ {f _ {2}} \\ {} &A _ {3} &{} \\ \end{array} $$
Commutativity of this diagram means that $ f _ {3} = f _ {2} \circ f _ {1} $.
A square diagram corresponds to the graph
$$ \begin{array}{rcl} i _ {1} \mathop \cdot \limits &\mathop \rightarrow \limits ^ {u _ {1}} &\mathop \cdot \limits i _ {2} \\ \scriptsize {u _ {4}} \downarrow &{} &\downarrow \scriptsize {u _ {2}} \\ i _ {4} \mathop \cdot \limits &\mathop \rightarrow \limits _ {u _ {3}} &\mathop \cdot \limits i _ {3} \\ \end{array} $$
and is represented as follows:
$$ \begin{array}{lcl} A _ {1} &\mathop \rightarrow \limits ^ {f _ {1}} &A _ {2} \\ \scriptsize {f _ {4}} \downarrow &{} &\downarrow \scriptsize {f _ {2}} \\ A _ {4} &\mathop \rightarrow \limits _ {f _ {3}} &A _ {3} \\ \end{array} $$
Commutativity of this diagram means that $ f _ {2} \circ f _ {1} = f _ {3} \circ f _ {4} $.
The class of diagrams with a given graph $ \Gamma $ forms a category. A morphism of a diagram $ D $ into a diagram $ D _ {1} $ is taken to be a family of morphisms $ \nu _ {i} : D (i) \mathop \rightarrow \limits D _ {1} (i) $, where $ i $ runs through the set of vertices of $ \Gamma $, so that for any edge $ u $ with source $ i $ and target $ j $ the condition $ D _ {1} (u) \circ \nu _ {i} = \nu _ {j} \circ D (u) $ is met. In particular, one may speak of isomorphic diagrams. The graph $ \Gamma $ is sometimes referred to as the scheme of a diagram in $ C $.
References
[1] | A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohoku Math. J. , 9 (1957) pp. 119–221 |
Comments
References
[a1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[a2] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 |
Diagram. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagram&oldid=49790