Namespaces
Variants
Actions

Difference between revisions of "S-duality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (tex done, typos)
 
Line 21: Line 21:
 
homotopic mappings  $  f $
 
homotopic mappings  $  f $
 
from a  $  p $-
 
from a  $  p $-
fold [[Suspension|suspension]]  $  S ^ {p} X _ {1} $
+
fold [[Suspension|suspension]]  $  S ^ { p } X _ { 1 } $
into  $  S ^ {p} X _ {2} $,  
+
into  $  S ^ { p } X _ { 2 } $,  
 
$  f $
 
$  f $
and  $  g:  S ^ {q} X _ {1} \rightarrow S ^ {q} X _ {2} $
+
and  $  g:  S ^ { q } X _ { 1 } \rightarrow S ^ { q } X _ { 2 } $
 
being considered as  $  S $-
 
being considered as  $  S $-
homotopic if there exists an  $  r \geq  \max ( p, q) $
+
homotopic if there exists an  $  r \geq  \max { ( p, q) } $
such that the suspensions  $  S  ^ {r-} p f $
+
such that the suspensions  $  S ^ { {r-p}  } f $
and  $  S  ^ {r-} q g $
+
and  $  S ^ { {r-q}  } g $
are homotopic in the ordinary sense. The set  $  \{ X _ {1} , X _ {2} \} $
+
are homotopic in the ordinary sense. The set  $  \{ X _ { 1 } , X _ { 2 } \} $
 
of such classes, which are known as  $  S $-
 
of such classes, which are known as  $  S $-
mappings, constitutes an Abelian group with respect to the so-called track addition [[#References|[1]]], [[#References|[2]]], [[#References|[4]]], [[#References|[5]]]. The group  $  \{ X _ {1} , X _ {2} \} $
+
mappings, constitutes an Abelian group with respect to the so-called track addition [[#References|[1]]], [[#References|[2]]], [[#References|[4]]], [[#References|[5]]]. The group  $  \{ X _ { 1 } , X _ { 2 } \} $
is the limit of the direct spectrum of the sets  $  [ S ^ {k} X _ {1} , S ^ {k} X _ {2} ] $
+
is the limit of the direct spectrum of the sets  $  [ S ^ { k } X _ { 1 } , S ^ { k } X _ { 2 } ] $
 
of ordinary homotopy classes with suspension mappings as projections; if  $  k $
 
of ordinary homotopy classes with suspension mappings as projections; if  $  k $
is sufficiently large, it is a group spectrum with homomorphisms. There exists an isomorphism  $  S:  \{ X _ {1} , X _ {2} \} \rightarrow \{ SX _ {1} , SX _ {2} \} $
+
is sufficiently large, it is a group spectrum with homomorphisms. There exists an isomorphism  $  S:  \{ X _ { 1 } , X _ { 2 } \} \rightarrow \{ SX _ { 1 } , SX _ { 2 } \} $
in which the corresponding elements are represented by one and the same mapping  $  S ^ {p} X _ {1} \rightarrow S ^ {p} X _ {2} $,  
+
in which the corresponding elements are represented by one and the same mapping  $  S ^ { p } X _ { 1 } \rightarrow S ^ { p } X _ { 2 } $,  
 
$  p \geq  1 $.  
 
$  p \geq  1 $.  
 
The  $  n $-
 
The  $  n $-
 
dual polyhedron of the polyhedron  $  X $
 
dual polyhedron of the polyhedron  $  X $
in a sphere  $  S ^ {n} $
+
in a sphere  $  S ^ { n } $
is an arbitrary polyhedron  $  D _ {n} X $
+
is an arbitrary polyhedron  $  D _ { n } X $
in  $  S ^ {n} $
+
in  $  S ^ { n } $
 
which is an  $  S $-
 
which is an  $  S $-
deformation retract of the complement  $  S ^ {n} \setminus  X $,  
+
deformation retract of the complement  $  S ^ { n } \setminus  X $,  
i.e. the morphism corresponding to the imbedding  $  D _ {n} X \subset  S ^ {n} \setminus  X $
+
i.e. the morphism corresponding to the imbedding  $  D _ { n } X \subset  S ^ { n } \setminus  X $
 
is an  $  S $-
 
is an  $  S $-
equivalence. The polyhedron  $  D _ {n} X $
+
equivalence. The polyhedron  $  D _ { n } X $
 
exists for all  $  X $,  
 
exists for all  $  X $,  
 
and  $  X $
 
and  $  X $
may be considered as  $  D _ {n}  ^ {2} X $.
+
may be considered as  $  D _ { n }  ^ { 2 } X $.
  
For any polyhedra  $  X _ {1} , X _ {2} $
+
For any polyhedra  $  X _ { 1 } , X _ { 2 } $
and any polyhedra  $  D _ {n} X _ {1} $
+
and any polyhedra  $  D _ { n } X _ { 1 } $
and  $  D _ {n} X _ {2} $
+
and  $  D _ { n } X _ { 2 } $
 
which are dual to them, there exists a unique mapping
 
which are dual to them, there exists a unique mapping
  
 
$$  
 
$$  
D _ {n} :  \{ X _ {1} , X _ {2} \}  \rightarrow \  
+
D _ { n } :  \{ X _ { 1 } , X _ { 2 } \}  \rightarrow \  
\{ D _ {n} X _ {2} , D _ {n} X _ {1} \}
+
\{ D _ { n } X _ { 2 } , D _ { n } X _ { 1 } \}
 
$$
 
$$
  
 
satisfying the following conditions:
 
satisfying the following conditions:
  
a) It is an involutory contravariant functorial isomorphism, i.e.  $  D _ {n} $
+
a) It is an involutory contravariant functorial isomorphism, i.e.  $  D _ { n } $
 
is a homomorphism such that if
 
is a homomorphism such that if
  
 
$$  
 
$$  
i :  X _ {1} \subset  X _ {2} \  \textrm{ and } \  i ^  \prime  :  D _ {n} X _ {2}  \subset  D _ {n} X _ {1} ,
+
i :  X _ { 1 }   \subset  X _ { 2 } \  \textrm{ and } \  i ^  \prime  :  D _ { n } X _ { 2 }  
 +
  \subset  D _ { n } X _ { 1 } ,
 
$$
 
$$
  
Line 73: Line 74:
  
 
$$  
 
$$  
D _ {n} \{ i \}  =  \{ i ^  \prime  \} ;
+
D _ { n } \{ i \}  =  \{ i ^  \prime  \} ;
 
$$
 
$$
  
Line 79: Line 80:
  
 
$$  
 
$$  
\{ f _ {1} \}  \in  \{ X _ {1} , X _ {2} \} \  \textrm{ and } \ \  
+
\{ f _ { 1 } \}  \in  \{ X _ { 1 } , X _ { 2 } \} \  \textrm{ and } \ \  
\{ f _ {2} \}  \in  \{ X _ {2} , X _ {3} \} ,
+
\{ f _ { 2 } \}  \in  \{ X _ { 2 } , X _ { 3 } \} ,
 
$$
 
$$
  
Line 86: Line 87:
  
 
$$  
 
$$  
D _ {n} ( \{ f _ {2} \} \cdot \{ f _ {1} \} )  = \  
+
D _ { n } { ( \{ f _ { 2 } \} \cdot \{ f _ { 1 } \} ) } = \  
D _ {n} \{ f _ {1} \} \cdot D _ {n} \{ f _ {2} \} ;
+
D _ { n } \{ f _ { 1 } \} \cdot D _ { n } \{ f _ { 2 } \} ;
 
$$
 
$$
  
 
if  $  \theta $
 
if  $  \theta $
is an element of  $  \{ X _ {1} , X _ {2} \} $
+
is an element of  $  \{ X _ { 1 } , X _ { 2 } \} $
or of  $  \{ D _ {n} X _ {2} , D _ {n} X _ {1} \} $,  
+
or of  $  \{ D _ { n } X _ { 2 } , D _ { n } X _ { 1 } \} $,  
then  $  D _ {n} D _ {n} \theta = \theta $.
+
then  $  D _ { n } D _ { n } \theta = \theta $.
  
 
b) The following relations are valid:
 
b) The following relations are valid:
  
 
$$  
 
$$  
SD _ {n} =  D _ {n+} 1 \  \textrm{ and } \  D _ {n+} 1 S  =  D _ {n} ,
+
SD _ { n }   =  D _ {n+1}  } \  \textrm{ and } \  D _ {n+1}  } S  =  D _ { n } ,
 
$$
 
$$
  
where  $  SD _ {n} X _ {i} $
+
where  $  SD _ { n } X _ { i } $
and  $  D _ {n} X _ {i} $
+
and  $  D _ { n } X _ { i } $
are considered as polyhedra,  $  ( n + 1 ) $-
+
are considered as polyhedra,  $  { ( {n+1) } $-
dual to polyhedra  $  X _ {i} $
+
dual to polyhedra  $  X _ { i } $
and, correspondingly,  $  SX _ {i} $,  
+
and, correspondingly,  $  SX _ { i } $,  
 
$  i = 1, 2; $
 
$  i = 1, 2; $
 
this means that it does not depend on  $  n $
 
this means that it does not depend on  $  n $
Line 113: Line 114:
  
 
$$  
 
$$  
D _ {a}  ^ {n} \theta _ {*} =  ( D _ {n} \theta ) ^ {*} D _ {a}  ^ {n} ,
+
D _ { a }  ^ { n } \theta _ { * }   { ( D _ { n } \theta ) } ^ { * } D _ { a }  ^ { n } ,
 
$$
 
$$
  
Line 119: Line 120:
  
 
$$  
 
$$  
\theta _ {*} :  H _ {p} ( X _ {1} )  \rightarrow  H _ {p} ( X _ {2} )
+
\theta _ { * } :  H _ { p } { ( X _ { 1 } ) } \rightarrow  H _ { p } { ( X _ { 2 } ) }
 
$$
 
$$
  
Line 125: Line 126:
  
 
$$  
 
$$  
( D _ {n} \theta ) ^ {*} :  H  ^ {n-} p- 1
+
{ ( D _ { n } \theta ) } ^ { * } :  H ^ { { {n-p} -1}  }
( D _ {n} X _ {1} )  \rightarrow  H  ^ {n-} p- 1 ( D _ {n} X _ {2} )
+
{ ( D _ { n } X _ { 1 } ) } \rightarrow  H ^ { { {n-p} -1}  } { ( D _ { n } X _ { 2 } ) }
 
$$
 
$$
  
 
are homomorphisms of the above homology and cohomology groups, induced by  $  S $-
 
are homomorphisms of the above homology and cohomology groups, induced by  $  S $-
mappings  $  \theta \in \{ X _ {1} , X _ {2} \} $
+
mappings  $  \theta \in \{ X _ { 1 } , X _ { 2 } \} $
and  $  D _ {n} \theta $,  
+
and  $  D _ { n } \theta $,  
 
and
 
and
  
 
$$  
 
$$  
D _ {a} :  H _ {p} ( X _ {i} )  \rightarrow  H  ^ {n-} p- 1
+
D _ { a } :  H _ { p } { ( X _ { i } ) } \rightarrow  H ^ { { {n-p} -1}  }
( D _ {n} X _ {i} ) ,\  i= 1 , 2 ,
+
{ ( D _ { n } X _ { i } ) } ,\  {i=1} , 2 ,
 
$$
 
$$
  
is an isomorphism obtained from the isomorphism of [[Alexander duality|Alexander duality]] by replacing the set  $  S ^ {n} \setminus  X _ {i} $
+
is an isomorphism obtained from the isomorphism of [[Alexander duality|Alexander duality]] by replacing the set  $  S ^ { n } \setminus  X _ { i } $
 
by its  $  S $-
 
by its  $  S $-
deformation retract  $  D _ {n} X _ {i} $.
+
deformation retract  $  D _ { n } X _ { i } $.
  
The construction of  $  D _ {n} $
+
The construction of  $  D _ { n } $
 
is based on the representation of a given mapping as the composition of an imbedding and an  $  S $-
 
is based on the representation of a given mapping as the composition of an imbedding and an  $  S $-
 
deformation retract.
 
deformation retract.
  
 
The  $  S $-
 
The  $  S $-
homotopy group  $  \Sigma _ {p} ( X) $
+
homotopy group  $  \Sigma _ { p } { ( X) } $
 
of a space  $  X $
 
of a space  $  X $
is the group  $  \{ S ^ {p} , X \} $,  
+
is the group  $  \{ S ^ { p } , X \} $,  
 
and the  $  S $-
 
and the  $  S $-
cohomotopy group  $  \Sigma ^ {p} ( X) $
+
cohomotopy group  $  \Sigma ^ { p } { ( X) } $
 
of  $  X $
 
of  $  X $
is the group  $  \{ X, S ^ {p} \} $.  
+
is the group  $  \{ X, S ^ { p } \} $.  
 
As in ordinary homotopy theory, one defines the homomorphisms
 
As in ordinary homotopy theory, one defines the homomorphisms
  
 
$$  
 
$$  
\phi _ {p} :  \Sigma _ {p} ( X)  \rightarrow  H _ {p} ( X) ,
+
\phi _ { p } :  \Sigma _ { p } { ( X) } \rightarrow  H _ { p } { ( X) } ,
 
$$
 
$$
  
 
$$  
 
$$  
\phi ^ {p} :  \Sigma ^ {p} ( X)  \rightarrow  H ^ {p} ( X) .
+
\phi ^ { p } :  \Sigma ^ { p } { ( X) } \rightarrow  H ^ { p } { ( X) } .
 
$$
 
$$
  
Regarding the spheres  $  S ^ {p} $
+
Regarding the spheres  $  S ^ { p } $
and  $  S  ^ {n-} p- 1 $
+
and  $  S ^ { { {n-p} -1}  } $
 
as  $  n $-
 
as  $  n $-
 
dual leads to the isomorphisms
 
dual leads to the isomorphisms
  
 
$$  
 
$$  
D _ {n} :  \Sigma _ {p} ( X)  \rightarrow  \Sigma  ^ {n-} p- 1 ( D _ {n} X)
+
D _ { n } :  \Sigma _ { p } { ( X) } \rightarrow  \Sigma ^ { { {n-p} -1}  } { ( D _ { n } X) }
 
$$
 
$$
  
Line 179: Line 180:
  
 
\begin{array}{ccc}
 
\begin{array}{ccc}
{\Sigma _ {p} ( X) }  & \rightarrow ^ { {\phi _ p} }  &{H _ {p} ( X) }  \\
+
{\Sigma _ { p } { ( X) } }  & \stackrel{ \phi _ p }{\rightarrow}  &{H _ { p } { ( X) } }  \\
{ {size - 3 {D _ {n} } } \downarrow }  &{}  &{\downarrow {size - 3 {D _ {a}  ^ {n} } } }  \\
+
{ { {D _ { n } } } \downarrow }  &{}  &{\downarrow { {D _ { a }  ^ { n } } } }  \\
{\Sigma  ^ {n-} p- 1 ( D _ {n}  ^ {X} ) }  &\mathop \rightarrow \limits _ { {\phi ^ {n-} p- 1 }}   }  &{H  ^ {n-} p- 1 ( D _ {n} X) }  \\
+
{\Sigma ^ { { {n-p} -1}  } { ( D _ { n }  ^ { X } ) } }  & \stackrel{\phi ^{n-p-1}}{\rightarrow}  &{H ^ { { {n-p} -1}  } { ( D _ { n } X) } }  \\
 
\end{array}
 
\end{array}
  
 
$$
 
$$
  
Thus, the isomorphism  $  D _ {n} $
+
Thus, the isomorphism  $  D _ { n } $
 
connects  $  S $-
 
connects  $  S $-
 
homotopy and  $  S $-
 
homotopy and  $  S $-
cohomotopy groups, just as the isomorphism of Alexander duality  $  D _ {a}  ^ {n} $
+
cohomotopy groups, just as the isomorphism of Alexander duality  $  D _ { a }  ^ { n } $
 
connects the homology and cohomology groups. Any duality in the  $  S $-
 
connects the homology and cohomology groups. Any duality in the  $  S $-
 
category entails a duality of ordinary homotopy classes if the conditions imposed on the space entail the existence of a one-to-one correspondence between the set of the above classes and the set of  $  S $-
 
category entails a duality of ordinary homotopy classes if the conditions imposed on the space entail the existence of a one-to-one correspondence between the set of the above classes and the set of  $  S $-
 
homotopy classes.
 
homotopy classes.
  
Examples of dual assumptions in this theory include Hurewicz's isomorphism theorem and Hopf's classification theorem.  $  D _ {n} $
+
Examples of dual assumptions in this theory include Hurewicz's isomorphism theorem and Hopf's classification theorem.  $  D _ { n } $
 
converts one of these theorems into the other, which means that  $  S $-
 
converts one of these theorems into the other, which means that  $  S $-
 
homotopy groups are replaced by  $  S $-
 
homotopy groups are replaced by  $  S $-
cohomotopy groups, homology groups by cohomology groups, the mapping  $  \phi _ {p} $
+
cohomotopy groups, homology groups by cohomology groups, the mapping  $  \phi _ { p } $
by the mapping  $  \phi  ^ {n-} p- 1 $,  
+
by the mapping  $  \phi ^ { { {n-p} -1}  } $,  
 
the smallest dimension with a non-trivial homology group by the largest dimension with a non-trivial cohomology group, and vice versa. In ordinary homotopy theory the definition of an  $  n $-
 
the smallest dimension with a non-trivial homology group by the largest dimension with a non-trivial cohomology group, and vice versa. In ordinary homotopy theory the definition of an  $  n $-
cohomotopy group requires that the dimension of the space does not exceed  $ 2n - 2 $(
+
cohomotopy group requires that the dimension of the space does not exceed  $   {2n-2$(
or, more generally, that the space be  $ ( 2n - 1) $-
+
or, more generally, that the space be  $   { { ( 2n-1) }}  $-
 
coconnected,  $  n > 1 $),  
 
coconnected,  $  n > 1 $),  
 
which impairs the perfectly general nature of duality.
 
which impairs the perfectly general nature of duality.

Latest revision as of 13:45, 8 June 2020


stationary duality, Spanier duality

A duality in homotopy theory which exists (in the absence of restrictions imposed on the dimensions of spaces) for the analogues of ordinary homotopy and cohomotopy groups in the suspension category — for the $ S $- homotopy and $ S $- cohomotopy groups or stationary homotopy and cohomotopy groups, forming extra-ordinary (generalized) homology and cohomology theories. A suspension category, or $ S $- category, is a category whose objects are topological spaces $ X $, while its morphisms are classes $ \{ f \} $ of $ S $- homotopic mappings $ f $ from a $ p $- fold suspension $ S ^ { p } X _ { 1 } $ into $ S ^ { p } X _ { 2 } $, $ f $ and $ g: S ^ { q } X _ { 1 } \rightarrow S ^ { q } X _ { 2 } $ being considered as $ S $- homotopic if there exists an $ r \geq \max { ( p, q) } $ such that the suspensions $ S ^ { {r-p} } f $ and $ S ^ { {r-q} } g $ are homotopic in the ordinary sense. The set $ \{ X _ { 1 } , X _ { 2 } \} $ of such classes, which are known as $ S $- mappings, constitutes an Abelian group with respect to the so-called track addition [1], [2], [4], [5]. The group $ \{ X _ { 1 } , X _ { 2 } \} $ is the limit of the direct spectrum of the sets $ [ S ^ { k } X _ { 1 } , S ^ { k } X _ { 2 } ] $ of ordinary homotopy classes with suspension mappings as projections; if $ k $ is sufficiently large, it is a group spectrum with homomorphisms. There exists an isomorphism $ S: \{ X _ { 1 } , X _ { 2 } \} \rightarrow \{ SX _ { 1 } , SX _ { 2 } \} $ in which the corresponding elements are represented by one and the same mapping $ S ^ { p } X _ { 1 } \rightarrow S ^ { p } X _ { 2 } $, $ p \geq 1 $. The $ n $- dual polyhedron of the polyhedron $ X $ in a sphere $ S ^ { n } $ is an arbitrary polyhedron $ D _ { n } X $ in $ S ^ { n } $ which is an $ S $- deformation retract of the complement $ S ^ { n } \setminus X $, i.e. the morphism corresponding to the imbedding $ D _ { n } X \subset S ^ { n } \setminus X $ is an $ S $- equivalence. The polyhedron $ D _ { n } X $ exists for all $ X $, and $ X $ may be considered as $ D _ { n } ^ { 2 } X $.

For any polyhedra $ X _ { 1 } , X _ { 2 } $ and any polyhedra $ D _ { n } X _ { 1 } $ and $ D _ { n } X _ { 2 } $ which are dual to them, there exists a unique mapping

$$ D _ { n } : \{ X _ { 1 } , X _ { 2 } \} \rightarrow \ \{ D _ { n } X _ { 2 } , D _ { n } X _ { 1 } \} $$

satisfying the following conditions:

a) It is an involutory contravariant functorial isomorphism, i.e. $ D _ { n } $ is a homomorphism such that if

$$ i : X _ { 1 } \subset X _ { 2 } \ \textrm{ and } \ i ^ \prime : D _ { n } X _ { 2 } \subset D _ { n } X _ { 1 } , $$

then

$$ D _ { n } \{ i \} = \{ i ^ \prime \} ; $$

if

$$ \{ f _ { 1 } \} \in \{ X _ { 1 } , X _ { 2 } \} \ \textrm{ and } \ \ \{ f _ { 2 } \} \in \{ X _ { 2 } , X _ { 3 } \} , $$

then

$$ D _ { n } { ( \{ f _ { 2 } \} \cdot \{ f _ { 1 } \} ) } = \ D _ { n } \{ f _ { 1 } \} \cdot D _ { n } \{ f _ { 2 } \} ; $$

if $ \theta $ is an element of $ \{ X _ { 1 } , X _ { 2 } \} $ or of $ \{ D _ { n } X _ { 2 } , D _ { n } X _ { 1 } \} $, then $ D _ { n } D _ { n } \theta = \theta $.

b) The following relations are valid:

$$ SD _ { n } = D _ { {n+1} } \ \textrm{ and } \ D _ { {n+1} } S = D _ { n } , $$

where $ SD _ { n } X _ { i } $ and $ D _ { n } X _ { i } $ are considered as polyhedra, $ { ( {n+1} ) } $- dual to polyhedra $ X _ { i } $ and, correspondingly, $ SX _ { i } $, $ i = 1, 2; $ this means that it does not depend on $ n $ and is stationary with respect to suspension.

c) It satisfies the equation

$$ D _ { a } ^ { n } \theta _ { * } = { ( D _ { n } \theta ) } ^ { * } D _ { a } ^ { n } , $$

where

$$ \theta _ { * } : H _ { p } { ( X _ { 1 } ) } \rightarrow H _ { p } { ( X _ { 2 } ) } $$

and

$$ { ( D _ { n } \theta ) } ^ { * } : H ^ { { {n-p} -1} } { ( D _ { n } X _ { 1 } ) } \rightarrow H ^ { { {n-p} -1} } { ( D _ { n } X _ { 2 } ) } $$

are homomorphisms of the above homology and cohomology groups, induced by $ S $- mappings $ \theta \in \{ X _ { 1 } , X _ { 2 } \} $ and $ D _ { n } \theta $, and

$$ D _ { a } : H _ { p } { ( X _ { i } ) } \rightarrow H ^ { { {n-p} -1} } { ( D _ { n } X _ { i } ) } ,\ {i=1} , 2 , $$

is an isomorphism obtained from the isomorphism of Alexander duality by replacing the set $ S ^ { n } \setminus X _ { i } $ by its $ S $- deformation retract $ D _ { n } X _ { i } $.

The construction of $ D _ { n } $ is based on the representation of a given mapping as the composition of an imbedding and an $ S $- deformation retract.

The $ S $- homotopy group $ \Sigma _ { p } { ( X) } $ of a space $ X $ is the group $ \{ S ^ { p } , X \} $, and the $ S $- cohomotopy group $ \Sigma ^ { p } { ( X) } $ of $ X $ is the group $ \{ X, S ^ { p } \} $. As in ordinary homotopy theory, one defines the homomorphisms

$$ \phi _ { p } : \Sigma _ { p } { ( X) } \rightarrow H _ { p } { ( X) } , $$

$$ \phi ^ { p } : \Sigma ^ { p } { ( X) } \rightarrow H ^ { p } { ( X) } . $$

Regarding the spheres $ S ^ { p } $ and $ S ^ { { {n-p} -1} } $ as $ n $- dual leads to the isomorphisms

$$ D _ { n } : \Sigma _ { p } { ( X) } \rightarrow \Sigma ^ { { {n-p} -1} } { ( D _ { n } X) } $$

and to the commutative diagram

$$ \begin{array}{ccc} {\Sigma _ { p } { ( X) } } & \stackrel{ \phi _ p }{\rightarrow} &{H _ { p } { ( X) } } \\ { { {D _ { n } } } \downarrow } &{} &{\downarrow { {D _ { a } ^ { n } } } } \\ {\Sigma ^ { { {n-p} -1} } { ( D _ { n } ^ { X } ) } } & \stackrel{\phi ^{n-p-1}}{\rightarrow} &{H ^ { { {n-p} -1} } { ( D _ { n } X) } } \\ \end{array} $$

Thus, the isomorphism $ D _ { n } $ connects $ S $- homotopy and $ S $- cohomotopy groups, just as the isomorphism of Alexander duality $ D _ { a } ^ { n } $ connects the homology and cohomology groups. Any duality in the $ S $- category entails a duality of ordinary homotopy classes if the conditions imposed on the space entail the existence of a one-to-one correspondence between the set of the above classes and the set of $ S $- homotopy classes.

Examples of dual assumptions in this theory include Hurewicz's isomorphism theorem and Hopf's classification theorem. $ D _ { n } $ converts one of these theorems into the other, which means that $ S $- homotopy groups are replaced by $ S $- cohomotopy groups, homology groups by cohomology groups, the mapping $ \phi _ { p } $ by the mapping $ \phi ^ { { {n-p} -1} } $, the smallest dimension with a non-trivial homology group by the largest dimension with a non-trivial cohomology group, and vice versa. In ordinary homotopy theory the definition of an $ n $- cohomotopy group requires that the dimension of the space does not exceed $ {2n-2} $( or, more generally, that the space be $ { { ( 2n-1) }} $- coconnected, $ n > 1 $), which impairs the perfectly general nature of duality.

There are several trends of generalization of the theory: e.g. studies are made of spaces with the $ S $- homotopy type of polyhedra, the relative case, a theory with supports, etc. [3], [5], , [7]. The theory was one of the starting points in the development of stationary homotopy theory [8].

References

[1] E.H. Spanier, "Duality and -theory" Bull. Amer. Math. Soc. , 62 (1956) pp. 194–203 MR0085506
[2] E.H. Spanier, J.H.C. Whitehead, "Duality in homotopy theory" Mathematika , 2 : 3 (1955) pp. 56–80 MR0074823 Zbl 0064.17202
[3] E.H. Spanier, J.H.C. Whitehead, "Duality in relative homotopy theory" Ann. of Math. , 67 : 2 (1958) pp. 203–238 MR0105105 Zbl 0092.15701
[4] M.G. Barratt, "Track groups 1; 2" Proc. London Math. Soc. , 5 (1955) pp. 71–106; 285–329
[5] E.H. Spanier, J.H.C. Whitehead, "The theory of carriers and -theory" , Algebraic geometry and Topology (A Symp. in honor of S. Lefschetz) , Princeton Univ. Press (1957) pp. 330–360 MR0084772
[6a] B. Eckmann, P.J. Hilton, "Groupes d'homotopie et dualité. Groupes absolus" C.R. Acad. Sci. Paris , 246 : 17 (1958) pp. 2444–2447 MR0100261 Zbl 0092.39901
[6b] B. Eckmann, P.J. Hilton, "Groupes d'homotopie et dualité. Suites exactes" C.R. Acad. Sci. Paris , 246 : 18 (1958) pp. 2555–2558 MR0100262 Zbl 0092.40001
[6c] B. Eckmann, P.J. Hilton, "Groupes d'homotopie et dualité. Coefficients" C.R. Acad. Sci. Paris , 246 : 21 (1958) pp. 2991–2993 MR0100263 Zbl 0092.40101
[6d] B. Eckmann, P.J. Hilton, "Transgression homotopique et cohomologique" C.R. Acad. Sci. Paris , 247 : 6 (1958) pp. 620–623 MR0100264 Zbl 0092.40102
[6e] B. Eckmann, P.J. Hilton, "Décomposition homologique d'un polyhèdre simplement connexe" C.R. Acad. Sci. Paris , 248 : 14 (1959) pp. 2054–2056
[7] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) MR0210112 MR1325242 Zbl 0145.43303
[8] G.W. Whitehead, "Recent advances in homotopy theory" , Amer. Math. Soc. (1970) MR0309097 Zbl 0217.48601
How to Cite This Entry:
S-duality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=S-duality&oldid=49677
This article was adapted from an original article by G.S. Chogoshvili (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article