Difference between revisions of "Rényi test"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (tex done, typos) |
||
Line 13: | Line 13: | ||
A [[Statistical test|statistical test]] used for testing a simple non-parametric hypothesis $ H _ {0} $( | A [[Statistical test|statistical test]] used for testing a simple non-parametric hypothesis $ H _ {0} $( | ||
cf. [[Non-parametric methods in statistics|Non-parametric methods in statistics]]), according to which independent identically-distributed random variables $ X _ {1} \dots X _ {n} $ | cf. [[Non-parametric methods in statistics|Non-parametric methods in statistics]]), according to which independent identically-distributed random variables $ X _ {1} \dots X _ {n} $ | ||
− | have a given continuous distribution function $ F( x) $, | + | have a given continuous distribution function $ F{ ( x) } $, |
against the alternatives: | against the alternatives: | ||
$$ | $$ | ||
− | H _ {1} ^ {+} : \sup _ {| x | < \infty } \psi [ F( x)] ( {\mathsf E} F _ {n} ( x) - F( x)) | + | H _ {1} ^ {+} : \sup _ {| x | < \infty } \psi [ F{ ( x) }] { ( {\mathsf E} F _ {n} {( x) }-F{ ( x) })} |
> 0, | > 0, | ||
$$ | $$ | ||
Line 23: | Line 23: | ||
$$ | $$ | ||
H _ {1} ^ {-} : \inf _ {| x | < | H _ {1} ^ {-} : \inf _ {| x | < | ||
− | \infty } \psi [ F( x)]( {\mathsf E} F _ {n} ( x) - F( x)) | + | \infty } \psi [ F{ ( x) }]{ ( {\mathsf E} F _ {n} {( x) }-F{ ( x) })} < 0, |
$$ | $$ | ||
$$ | $$ | ||
H _ {1} : \sup _ {| x | < \infty } \ | H _ {1} : \sup _ {| x | < \infty } \ | ||
− | \psi [ F( x)] | {\mathsf E} F _ {n} ( x) - F( x) | > 0, | + | \psi [ F{ ( x) }] | {\mathsf E} F _ {n} { { ( x) }-F{ ( x) }} | > 0, |
$$ | $$ | ||
− | where $ F _ {n} ( x) $ | + | where $ F _ {n} { ( x) } $ |
is the empirical distribution function constructed with respect to the sample $ X _ {1} \dots X _ {n} $ | is the empirical distribution function constructed with respect to the sample $ X _ {1} \dots X _ {n} $ | ||
− | and $ \psi ( F ) $, | + | and $ \psi { ( F ) } $, |
$ \psi \geq 0 $, | $ \psi \geq 0 $, | ||
is a weight function. If | is a weight function. If | ||
$$ | $$ | ||
− | \psi [ F( x)] = \left \{ | + | \psi [ F{ ( x) }] = \left \{ |
\begin{array}{lll} | \begin{array}{lll} | ||
− | + | { | |
− | \frac{1}{F(} | + | \frac{ 1 }{ F{ ( } |
− | x) & \textrm{ when } &F( x) \geq a, \\ | + | x) } } & \textrm{ when } &F{ ( x) } \geq a, \\ |
− | 0 & \textrm{ when } &F( x) < a, \\ | + | 0 & \textrm{ when } &F{ ( x) } < a, \\ |
\end{array} | \end{array} | ||
Line 58: | Line 58: | ||
$$ | $$ | ||
− | R _ {n} ^ {+} ( a, 1) = \ | + | R _ {n} ^ {+} { ( a, 1) } = \ |
− | \sup _ {F( x) \geq a } | + | \sup _ {F{ ( x) } \geq a } |
− | \frac{F _ {n} ( x) - F( x) }{F(} | + | \frac{ F _ {n} { { ( x) }-F{ ( x) }} }{ F{ ( } |
− | x) = | + | x) } = |
$$ | $$ | ||
$$ | $$ | ||
= \ | = \ | ||
− | \max _ {F( X _ {(} m) ) \geq a } | + | \max _ {F{ ( X _ {(} m) } ) \geq a } |
− | \frac{( m / n) - F( X _ {(} m) ) }{F( X _ {(} m) ) } | + | \frac{ { ( m / {n) }-F{ ( X} _ {(} m) } ) }{ F{ ( X _ {(} m) } ) } |
, | , | ||
$$ | $$ | ||
$$ | $$ | ||
− | R _ {n} ^ {-} ( a, 1) = - \inf _ {F( x) | + | R _ {n} ^ {-} { ( a, 1) } = - \inf _ {F{ ( x) } |
\geq a } | \geq a } | ||
− | \frac{F _ {n} ( x) - F( x) }{F(} | + | \frac{ F _ {n} { { ( x) }-F{ ( x) }} }{ F{ ( } |
− | x) = | + | x) } = |
$$ | $$ | ||
$$ | $$ | ||
= \ | = \ | ||
− | \max _ {F( X _ {(} m) ) \geq a } | + | \max _ {F{ ( X _ {(} m) } ) \geq a } |
− | \frac{F( X _ {(} m) ) - ( m- 1) / n }{F( X _ {(} m) ) } | + | \frac{ F{ ( X _ {(} m) } {)- { { ( m-1) }} } / n }{ F{ ( X _ {(} m) } ) } |
, | , | ||
$$ | $$ | ||
$$ | $$ | ||
− | R _ {n} ( a, 1) = \sup _ {F( x) \geq a } | + | R _ {n} { ( a, 1) } = \sup _ {F{ ( x) } \geq a } |
− | \frac{| F _ {n} ( x) - F( x) | }{F(} | + | \frac{ | F _ {n} { { ( x) }-F{ ( x) }} | }{ F{ ( } |
− | x) = | + | x) } = |
$$ | $$ | ||
$$ | $$ | ||
= \ | = \ | ||
− | \max \{ R _ {n} ^ {+} ( a, 1), R _ {n} ^ {-} ( a, 1) \} , | + | \max \{ R _ {n} ^ {+} { ( a, 1) }, R _ {n} ^ {-} { ( a, 1) } \} , |
$$ | $$ | ||
− | where $ X _ {( | + | where $ X _ { ( 1) } \dots X _ { ( n) } $ |
are the members of the series of order statistics | are the members of the series of order statistics | ||
$$ | $$ | ||
− | X _ {( | + | X _ { ( 1) } \leq \dots \leq X _ { ( n) } , |
$$ | $$ | ||
constructed with respect to the observations $ X _ {1} \dots X _ {n} $. | constructed with respect to the observations $ X _ {1} \dots X _ {n} $. | ||
− | The statistics $ R _ {n} ^ {+} ( a, 1) $ | + | The statistics $ R _ {n} ^ {+} { ( a, 1) } $ |
− | and $ R _ {n} ^ {-} ( a, 1) $ | + | and $ R _ {n} ^ {-} { ( a, 1) } $ |
satisfy the same probability law and, if $ 0 < a \leq 1 $, | satisfy the same probability law and, if $ 0 < a \leq 1 $, | ||
then | then | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { | + | \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { { |
− | \frac{na}{1-} | + | \frac{ na }{ 1-a } |
− | + | } } R _ {n} ^ {+} { ( a, 1) } < | |
x \right \} = \ | x \right \} = \ | ||
− | 2 \Phi ( x) - 1,\ x > 0, | + | 2 \Phi { { ( x) }-1} ,\ x > 0, |
$$ | $$ | ||
$$ \tag{2 } | $$ \tag{2 } | ||
− | \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { | + | \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { { |
− | \frac{na}{1-} | + | \frac{ na }{ 1-a } |
− | + | } | |
− | } R _ {n} ( a, 1) < x \right \} = L( x),\ x > 0, | + | } R _ {n} { ( a, 1) } < x \right \} = L{ ( x) },\ x > 0, |
$$ | $$ | ||
− | where $ \Phi ( x) $ | + | where $ \Phi { ( x) } $ |
− | is the distribution function of the standard normal law (cf. [[Normal distribution|Normal distribution]]) and $ L( x) $ | + | is the distribution function of the standard normal law (cf. [[Normal distribution|Normal distribution]]) and $ L{ ( x) } $ |
is the Rényi distribution function, | is the Rényi distribution function, | ||
$$ | $$ | ||
− | L( x) = | + | L{ ( x) } = { |
− | \frac{4} \pi | + | \frac{ 4 } \pi |
− | \sum _ { k= } | + | } \sum _ {k=0} ^ \infty |
− | \frac{(- 1) | + | \frac{ { { (-1) }} ^ {k} }{ 2k+1 } |
− | + | \mathop{\rm exp} \left \{ - | |
− | \frac{( 2k+ 1) | + | \frac{ { { ( 2k+1) }} ^ {2} \pi ^ {2} }{ 8x ^ {2} } |
\right \} . | \right \} . | ||
$$ | $$ | ||
Line 144: | Line 144: | ||
$$ | $$ | ||
− | {\mathsf P} \{ R _ {n} ^ {+} ( 0, 1) \geq x \} = \ | + | {\mathsf P} \{ R _ {n} ^ {+} { ( 0, 1) } \geq x \} = \ |
− | 1 - | + | 1 - { |
− | \frac{x}{1+} | + | \frac{ x }{ 1+x } |
− | + | } ,\ x > 0. | |
$$ | $$ | ||
It follows from (1) and (2) that for larger values of $ n $ | It follows from (1) and (2) that for larger values of $ n $ | ||
the following approximate values may be used to calculate the $ Q $- | the following approximate values may be used to calculate the $ Q $- | ||
− | percent critical values $ ( 0\ | + | percent critical values $ { ( 0\%< Q < 50\%) } $ |
− | for the statistics $ R _ {n} ^ {+} ( a, 1) $ | + | for the statistics $ R _ {n} ^ {+} { ( a, 1) } $ |
− | and $ R _ {n} ( a, 1) $: | + | and $ R _ {n} { ( a, 1) } $: |
$$ | $$ | ||
− | \sqrt { | + | \sqrt { { |
− | \frac{a}{na} | + | \frac{ 1-a }{ na } |
− | } \Phi | + | } } \Phi ^ {-1} { { ( 1-0} .005 Q) } \ \textrm{ and } \ \ |
− | \sqrt { | + | \sqrt { { |
− | \frac{a}{na} | + | \frac{ 1-a }{ na } |
− | } L | + | } } L ^ {-1} { { ( 1-0} .01 Q) } , |
$$ | $$ | ||
− | respectively, where $ \Phi | + | respectively, where $ \Phi ^ {-1} { ( x) } $ |
− | and $ L | + | and $ L ^ {-1} { ( x) } $ |
− | are the inverse functions to $ \Phi ( x) $ | + | are the inverse functions to $ \Phi { ( x) } $ |
− | and $ L( x) $, | + | and $ L{ ( x) } $, |
− | respectively. This means that if $ 0\ | + | respectively. This means that if $ 0\% < Q < 10\% $, |
− | then $ \Phi | + | then $ \Phi ^ {-1} { { ( 1-0} .005Q) } \approx L ^ {-1} { { ( 1-0} .02Q) } $. |
Furthermore, if $ x > 2.99 $, | Furthermore, if $ x > 2.99 $, | ||
Line 176: | Line 176: | ||
$$ | $$ | ||
− | L( x) \approx 4 \Phi ( x) - 3 | + | L{ ( x) } \approx 4 \Phi { { ( x) }-3} |
$$ | $$ | ||
− | when calculating the values of the Rényi distribution function $ L( x) $; | + | when calculating the values of the Rényi distribution function $ L{ ( x) } $; |
− | its degree of error does not exceed $ 5 \cdot 10 | + | its degree of error does not exceed $ 5 \cdot 10 ^ {-7} $. |
In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function | In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function | ||
$$ | $$ | ||
− | \phi [ F( x)] = \left \{ | + | \phi [ F{ ( x) }] = \left \{ |
\begin{array}{ll} | \begin{array}{ll} | ||
− | + | { | |
− | \frac{1}{1- | + | \frac{ 1 }{ 1-F{ ( x) } } |
− | + | } & \textrm{ if } F{ ( x) } \leq a, \\ | |
− | 0 & \textrm{ if } F( x) > a, \\ | + | 0 & \textrm{ if } F{ ( x) } > a, \\ |
\end{array} | \end{array} | ||
Latest revision as of 12:16, 8 June 2020
A statistical test used for testing a simple non-parametric hypothesis $ H _ {0} $(
cf. Non-parametric methods in statistics), according to which independent identically-distributed random variables $ X _ {1} \dots X _ {n} $
have a given continuous distribution function $ F{ ( x) } $,
against the alternatives:
$$ H _ {1} ^ {+} : \sup _ {| x | < \infty } \psi [ F{ ( x) }] { ( {\mathsf E} F _ {n} {( x) }-F{ ( x) })} > 0, $$
$$ H _ {1} ^ {-} : \inf _ {| x | < \infty } \psi [ F{ ( x) }]{ ( {\mathsf E} F _ {n} {( x) }-F{ ( x) })} < 0, $$
$$ H _ {1} : \sup _ {| x | < \infty } \ \psi [ F{ ( x) }] | {\mathsf E} F _ {n} { { ( x) }-F{ ( x) }} | > 0, $$
where $ F _ {n} { ( x) } $ is the empirical distribution function constructed with respect to the sample $ X _ {1} \dots X _ {n} $ and $ \psi { ( F ) } $, $ \psi \geq 0 $, is a weight function. If
$$ \psi [ F{ ( x) }] = \left \{ \begin{array}{lll} { \frac{ 1 }{ F{ ( } x) } } & \textrm{ when } &F{ ( x) } \geq a, \\ 0 & \textrm{ when } &F{ ( x) } < a, \\ \end{array} \right .$$
where $ a $ is any fixed number from the interval $ [ 0, 1] $, then the Rényi test, which was intended for testing $ H _ {0} $ against the alternatives $ H _ {1} ^ {+} $, $ H _ {1} ^ {-} $, $ H _ {1} $, is based on the Rényi statistics
$$ R _ {n} ^ {+} { ( a, 1) } = \ \sup _ {F{ ( x) } \geq a } \frac{ F _ {n} { { ( x) }-F{ ( x) }} }{ F{ ( } x) } = $$
$$ = \ \max _ {F{ ( X _ {(} m) } ) \geq a } \frac{ { ( m / {n) }-F{ ( X} _ {(} m) } ) }{ F{ ( X _ {(} m) } ) } , $$
$$ R _ {n} ^ {-} { ( a, 1) } = - \inf _ {F{ ( x) } \geq a } \frac{ F _ {n} { { ( x) }-F{ ( x) }} }{ F{ ( } x) } = $$
$$ = \ \max _ {F{ ( X _ {(} m) } ) \geq a } \frac{ F{ ( X _ {(} m) } {)- { { ( m-1) }} } / n }{ F{ ( X _ {(} m) } ) } , $$
$$ R _ {n} { ( a, 1) } = \sup _ {F{ ( x) } \geq a } \frac{ | F _ {n} { { ( x) }-F{ ( x) }} | }{ F{ ( } x) } = $$
$$ = \ \max \{ R _ {n} ^ {+} { ( a, 1) }, R _ {n} ^ {-} { ( a, 1) } \} , $$
where $ X _ { ( 1) } \dots X _ { ( n) } $ are the members of the series of order statistics
$$ X _ { ( 1) } \leq \dots \leq X _ { ( n) } , $$
constructed with respect to the observations $ X _ {1} \dots X _ {n} $.
The statistics $ R _ {n} ^ {+} { ( a, 1) } $ and $ R _ {n} ^ {-} { ( a, 1) } $ satisfy the same probability law and, if $ 0 < a \leq 1 $, then
$$ \tag{1 } \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { { \frac{ na }{ 1-a } } } R _ {n} ^ {+} { ( a, 1) } < x \right \} = \ 2 \Phi { { ( x) }-1} ,\ x > 0, $$
$$ \tag{2 } \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { { \frac{ na }{ 1-a } } } R _ {n} { ( a, 1) } < x \right \} = L{ ( x) },\ x > 0, $$
where $ \Phi { ( x) } $ is the distribution function of the standard normal law (cf. Normal distribution) and $ L{ ( x) } $ is the Rényi distribution function,
$$ L{ ( x) } = { \frac{ 4 } \pi } \sum _ {k=0} ^ \infty \frac{ { { (-1) }} ^ {k} }{ 2k+1 } \mathop{\rm exp} \left \{ - \frac{ { { ( 2k+1) }} ^ {2} \pi ^ {2} }{ 8x ^ {2} } \right \} . $$
If $ a = 0 $, then
$$ {\mathsf P} \{ R _ {n} ^ {+} { ( 0, 1) } \geq x \} = \ 1 - { \frac{ x }{ 1+x } } ,\ x > 0. $$
It follows from (1) and (2) that for larger values of $ n $ the following approximate values may be used to calculate the $ Q $- percent critical values $ { ( 0\%< Q < 50\%) } $ for the statistics $ R _ {n} ^ {+} { ( a, 1) } $ and $ R _ {n} { ( a, 1) } $:
$$ \sqrt { { \frac{ 1-a }{ na } } } \Phi ^ {-1} { { ( 1-0} .005 Q) } \ \textrm{ and } \ \ \sqrt { { \frac{ 1-a }{ na } } } L ^ {-1} { { ( 1-0} .01 Q) } , $$
respectively, where $ \Phi ^ {-1} { ( x) } $ and $ L ^ {-1} { ( x) } $ are the inverse functions to $ \Phi { ( x) } $ and $ L{ ( x) } $, respectively. This means that if $ 0\% < Q < 10\% $, then $ \Phi ^ {-1} { { ( 1-0} .005Q) } \approx L ^ {-1} { { ( 1-0} .02Q) } $.
Furthermore, if $ x > 2.99 $, then it is advisable to use the approximate equation
$$ L{ ( x) } \approx 4 \Phi { { ( x) }-3} $$
when calculating the values of the Rényi distribution function $ L{ ( x) } $; its degree of error does not exceed $ 5 \cdot 10 ^ {-7} $.
In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function
$$ \phi [ F{ ( x) }] = \left \{ \begin{array}{ll} { \frac{ 1 }{ 1-F{ ( x) } } } & \textrm{ if } F{ ( x) } \leq a, \\ 0 & \textrm{ if } F{ ( x) } > a, \\ \end{array} \right .$$
where $ a $ is any fixed number from the interval $ [ 0, 1] $.
References
[1] | A. Rényi, "On the theory of order statistics" Acta Math. Acad. Sci. Hungar. , 4 (1953) pp. 191–231 |
[2] | J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967) |
[3] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
Rényi test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=R%C3%A9nyi_test&oldid=49676