Difference between revisions of "Student distribution"
Ulf Rehmann (talk | contribs) m (Undo revision 48882 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0907102.png | ||
+ | $#A+1 = 49 n = 0 | ||
+ | $#C+1 = 49 : ~/encyclopedia/old_files/data/S090/S.0900710 Student distribution | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''with $ f $ | ||
+ | degrees of freedom, $ t $- | ||
+ | distribution'' | ||
The probability distribution of the random variable | The probability distribution of the random variable | ||
− | + | $$ | |
+ | t _ {f} = | ||
+ | \frac{U}{\sqrt {\chi _ {f} ^ {2} / f } } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ U $ |
+ | is a random variable subject to the standard normal law $ N( 0, 1) $ | ||
+ | and $ \chi _ {f} ^ {2} $ | ||
+ | is a random variable not depending on $ U $ | ||
+ | and subject to the [[Chi-squared distribution| "chi-squared" distribution]] with $ f $ | ||
+ | degrees of freedom. The distribution function of the random variable $ t _ {f} $ | ||
+ | is expressed by the formula | ||
− | + | $$ | |
+ | {\mathsf P} \{ t _ {f} \leq x \} = S _ {f} ( x) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac{1}{\sqrt {\pi _ {f} } } | |
+ | |||
+ | \frac{\Gamma ( ( f+ 1 ) / 2 ) }{\Gamma | ||
+ | ( f / 2 ) } | ||
+ | \int\limits _ {- \infty } ^ { x } \left ( 1 + | ||
+ | \frac{u | ||
+ | ^ {2} }{f} | ||
+ | \right ) ^ {- ( f+ 1 ) / 2 } du,\ | x | < \infty . | ||
+ | $$ | ||
− | + | In particular, if $ f= 1 $, | |
+ | then | ||
+ | |||
+ | $$ | ||
+ | S _ {1} ( x) = | ||
+ | \frac{1}{2} | ||
+ | + | ||
+ | \frac{1} \pi | ||
+ | \mathop{\rm arctan} x | ||
+ | $$ | ||
is the distribution function of the [[Cauchy distribution|Cauchy distribution]]. The probability density of the Student distribution is symmetric about 0, therefore | is the distribution function of the [[Cauchy distribution|Cauchy distribution]]. The probability density of the Student distribution is symmetric about 0, therefore | ||
− | + | $$ | |
+ | S _ {f} ( t) + S _ {f} (- t) = 1 | ||
+ | \ \textrm{ for any } t \in \mathbf R ^ {1} . | ||
+ | $$ | ||
+ | |||
+ | The moments $ \mu _ {r} = {\mathsf E} t _ {f} ^ {r} $ | ||
+ | of a Student distribution exist only for $ r < f $, | ||
+ | the odd moments are equal to 0, and, in particular $ {\mathsf E} t _ {f} = 0 $. | ||
+ | The even moments of a Student distribution are expressed by the formula | ||
+ | |||
+ | $$ | ||
+ | \mu _ {2r} = f ^ { r } | ||
+ | \frac{\Gamma ( ( r + 1 ) / 2 ) \Gamma | ||
+ | ( f / 2 - r ) }{\sqrt \pi \Gamma ( f / 2 ) } | ||
+ | ,\ \ | ||
+ | 2 \leq 2r < f ; | ||
+ | $$ | ||
+ | |||
+ | in particular, $ \mu _ {2} = {\mathsf D} \{ t _ {f} \} = f/( f- 2) $. | ||
+ | The distribution function $ S _ {f} ( x) $ | ||
+ | of the random variable $ t _ {f} $ | ||
+ | is expressed in terms of the [[Beta-distribution|beta-distribution]] function in the following way: | ||
+ | |||
+ | $$ | ||
+ | S _ {f} ( x) = 1 - | ||
+ | \frac{1}{2} | ||
+ | I _ {f/( f+ x ^ {2} ) } \left ( | ||
+ | \frac{f}{2} | ||
+ | , | ||
+ | \frac{1}{2} | ||
+ | |||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | where $ I _ {z} ( a, b) $ | ||
+ | is the incomplete beta-function, $ 0 \leq z \leq 1 $. | ||
+ | If $ f \rightarrow \infty $, | ||
+ | then the Student distribution converges to the standard normal law, i.e. | ||
− | + | $$ | |
+ | \lim\limits _ {f\rightarrow \infty } S _ {f} ( x) = \ | ||
+ | \Phi ( x) = \ | ||
− | + | \frac{1}{\sqrt {2 \pi } } | |
+ | \int\limits _ {- \infty } ^ { x } e ^ {- t ^ {2} /2 } dt. | ||
+ | $$ | ||
− | + | Example. Let $ X _ {1} \dots X _ {n} $ | |
+ | be independent, identically, normally $ N( a, \sigma ^ {2} ) $- | ||
+ | distributed random variables, where the parameters $ a $ | ||
+ | and $ \sigma ^ {2} $ | ||
+ | are unknown. Then the statistics | ||
− | + | $$ | |
+ | \overline{X}\; = | ||
+ | \frac{1}{n} | ||
+ | \sum _ { i= } 1 ^ { n } X _ {i} \ \textrm{ and } \ \ | ||
+ | s ^ {2} = | ||
+ | \frac{1}{n-} | ||
+ | 1 \sum _ { i= } 1 ^ { n } ( X _ {i} - \overline{X}\; ) ^ {2} | ||
+ | $$ | ||
− | + | are the best unbiased estimators of $ a $ | |
+ | and $ \sigma ^ {2} $; | ||
+ | here $ \overline{X}\; $ | ||
+ | and $ s ^ {2} $ | ||
+ | are stochastically independent. Since the random variable $ \sqrt n ( \overline{X}\; - a)/ \sigma $ | ||
+ | is subject to the standard normal law, while | ||
− | + | $$ | |
+ | n- | ||
+ | \frac{1}{\sigma ^ {2} } | ||
+ | s ^ {2} = \chi _ {n-} 1 ^ {2} | ||
+ | $$ | ||
− | + | is distributed according to the "chi-squared" law with $ f= n- 1 $ | |
+ | degrees of freedom, then by virtue of their independence, the fraction | ||
− | + | $$ | |
− | + | \frac{\sqrt n ( \overline{X}\; - a) / \sigma }{\sqrt {\chi _ {n-} 1 ^ {2} / ( n- 1) } } | |
− | + | = | |
+ | \frac{\sqrt n ( \overline{X}\; - a) }{s} | ||
− | + | $$ | |
− | + | is subject to the Student distribution with $ f= n- 1 $ | |
+ | degrees of freedom. Let $ t _ {f} ( P) $ | ||
+ | and $ t _ {f} ( 1- P) = - t _ {f} ( P) $ | ||
+ | be the solutions of the equations | ||
− | + | $$ | |
+ | S _ {n-} 1 \left ( | ||
+ | \frac{\sqrt n ( \overline{X}\; - a) }{s} | ||
+ | \right ) = \ | ||
+ | \left \{ | ||
+ | \begin{array}{ll} | ||
+ | P, & 0.5 < P < 1, \\ | ||
+ | 1- P, & f = n- 1. \\ | ||
+ | \end{array} | ||
− | + | $$ | |
− | Then the statistics | + | Then the statistics $ \overline{X}\; - ( s/ \sqrt n ) t _ {f} ( P) $ |
+ | and $ \overline{X}\; + ( s/ \sqrt n ) t _ {f} ( P) $ | ||
+ | are the lower and upper bounds of the confidence set for the unknown mathematical expectation $ a $ | ||
+ | of the normal law $ N( a, \sigma ^ {2} ) $, | ||
+ | and the confidence coefficient of this confidence set is equal to $ 2P- 1 $, | ||
+ | i.e. | ||
− | + | $$ | |
+ | {\mathsf P} \left \{ \overline{X}\; - | ||
+ | \frac{s}{\sqrt n } | ||
+ | t _ {f} ( P) < a < \overline{X}\; + | ||
+ | \frac{s}{\sqrt | ||
+ | n } | ||
+ | t _ {f} ( P) \right \} = 2P- 1. | ||
+ | $$ | ||
The Student distribution was first used by W.S. Gosset (pseudonym Student). | The Student distribution was first used by W.S. Gosset (pseudonym Student). |
Latest revision as of 14:55, 7 June 2020
with $ f $
degrees of freedom, $ t $-
distribution
The probability distribution of the random variable
$$ t _ {f} = \frac{U}{\sqrt {\chi _ {f} ^ {2} / f } } , $$
where $ U $ is a random variable subject to the standard normal law $ N( 0, 1) $ and $ \chi _ {f} ^ {2} $ is a random variable not depending on $ U $ and subject to the "chi-squared" distribution with $ f $ degrees of freedom. The distribution function of the random variable $ t _ {f} $ is expressed by the formula
$$ {\mathsf P} \{ t _ {f} \leq x \} = S _ {f} ( x) = $$
$$ = \ \frac{1}{\sqrt {\pi _ {f} } } \frac{\Gamma ( ( f+ 1 ) / 2 ) }{\Gamma ( f / 2 ) } \int\limits _ {- \infty } ^ { x } \left ( 1 + \frac{u ^ {2} }{f} \right ) ^ {- ( f+ 1 ) / 2 } du,\ | x | < \infty . $$
In particular, if $ f= 1 $, then
$$ S _ {1} ( x) = \frac{1}{2} + \frac{1} \pi \mathop{\rm arctan} x $$
is the distribution function of the Cauchy distribution. The probability density of the Student distribution is symmetric about 0, therefore
$$ S _ {f} ( t) + S _ {f} (- t) = 1 \ \textrm{ for any } t \in \mathbf R ^ {1} . $$
The moments $ \mu _ {r} = {\mathsf E} t _ {f} ^ {r} $ of a Student distribution exist only for $ r < f $, the odd moments are equal to 0, and, in particular $ {\mathsf E} t _ {f} = 0 $. The even moments of a Student distribution are expressed by the formula
$$ \mu _ {2r} = f ^ { r } \frac{\Gamma ( ( r + 1 ) / 2 ) \Gamma ( f / 2 - r ) }{\sqrt \pi \Gamma ( f / 2 ) } ,\ \ 2 \leq 2r < f ; $$
in particular, $ \mu _ {2} = {\mathsf D} \{ t _ {f} \} = f/( f- 2) $. The distribution function $ S _ {f} ( x) $ of the random variable $ t _ {f} $ is expressed in terms of the beta-distribution function in the following way:
$$ S _ {f} ( x) = 1 - \frac{1}{2} I _ {f/( f+ x ^ {2} ) } \left ( \frac{f}{2} , \frac{1}{2} \right ) , $$
where $ I _ {z} ( a, b) $ is the incomplete beta-function, $ 0 \leq z \leq 1 $. If $ f \rightarrow \infty $, then the Student distribution converges to the standard normal law, i.e.
$$ \lim\limits _ {f\rightarrow \infty } S _ {f} ( x) = \ \Phi ( x) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { x } e ^ {- t ^ {2} /2 } dt. $$
Example. Let $ X _ {1} \dots X _ {n} $ be independent, identically, normally $ N( a, \sigma ^ {2} ) $- distributed random variables, where the parameters $ a $ and $ \sigma ^ {2} $ are unknown. Then the statistics
$$ \overline{X}\; = \frac{1}{n} \sum _ { i= } 1 ^ { n } X _ {i} \ \textrm{ and } \ \ s ^ {2} = \frac{1}{n-} 1 \sum _ { i= } 1 ^ { n } ( X _ {i} - \overline{X}\; ) ^ {2} $$
are the best unbiased estimators of $ a $ and $ \sigma ^ {2} $; here $ \overline{X}\; $ and $ s ^ {2} $ are stochastically independent. Since the random variable $ \sqrt n ( \overline{X}\; - a)/ \sigma $ is subject to the standard normal law, while
$$ n- \frac{1}{\sigma ^ {2} } s ^ {2} = \chi _ {n-} 1 ^ {2} $$
is distributed according to the "chi-squared" law with $ f= n- 1 $ degrees of freedom, then by virtue of their independence, the fraction
$$ \frac{\sqrt n ( \overline{X}\; - a) / \sigma }{\sqrt {\chi _ {n-} 1 ^ {2} / ( n- 1) } } = \frac{\sqrt n ( \overline{X}\; - a) }{s} $$
is subject to the Student distribution with $ f= n- 1 $ degrees of freedom. Let $ t _ {f} ( P) $ and $ t _ {f} ( 1- P) = - t _ {f} ( P) $ be the solutions of the equations
$$ S _ {n-} 1 \left ( \frac{\sqrt n ( \overline{X}\; - a) }{s} \right ) = \ \left \{ \begin{array}{ll} P, & 0.5 < P < 1, \\ 1- P, & f = n- 1. \\ \end{array} $$
Then the statistics $ \overline{X}\; - ( s/ \sqrt n ) t _ {f} ( P) $ and $ \overline{X}\; + ( s/ \sqrt n ) t _ {f} ( P) $ are the lower and upper bounds of the confidence set for the unknown mathematical expectation $ a $ of the normal law $ N( a, \sigma ^ {2} ) $, and the confidence coefficient of this confidence set is equal to $ 2P- 1 $, i.e.
$$ {\mathsf P} \left \{ \overline{X}\; - \frac{s}{\sqrt n } t _ {f} ( P) < a < \overline{X}\; + \frac{s}{\sqrt n } t _ {f} ( P) \right \} = 2P- 1. $$
The Student distribution was first used by W.S. Gosset (pseudonym Student).
References
[1] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) |
[2] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[3] | "Student" (W.S. Gosset), "The probable error of a mean" Biometrika , 6 (1908) pp. 1–25 |
Student distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Student_distribution&oldid=49611