Difference between revisions of "Schur theorems"
Ulf Rehmann (talk | contribs) m (Undo revision 48627 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0834801.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/S083/S.0803480 Schur theorems | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Theorems for finding a solution to the [[Coefficient problem|coefficient problem]] for bounded analytic functions. They were obtained by I. Schur [[#References|[1]]]. Let $ B $ | |
+ | be the class of regular functions $ f( z) = c _ {0} + c _ {1} z + \dots $ | ||
+ | in $ | z | < 1 $ | ||
+ | satisfying in it the condition $ | f( z ) | \leq 1 $. | ||
+ | Let $ \mathbf C ^ {n} $, | ||
+ | $ n \geq 1 $, | ||
+ | be the $ n $- | ||
+ | dimensional complex Euclidean space, its points are $ n $- | ||
+ | tuples of complex numbers $ ( c _ {0} \dots c _ {n-} 1 ) $; | ||
+ | let $ B ^ {(} n) $ | ||
+ | be a set of points $ ( c _ {0} \dots c _ {n-} 1 ) \in \mathbf C ^ {n} $ | ||
+ | such that the numbers $ c _ {0} \dots c _ {n-} 1 $ | ||
+ | are the first $ n $ | ||
+ | coefficients of some function from $ B $. | ||
+ | The sets $ B ^ {(} n) $ | ||
+ | are closed, bounded and convex in $ \mathbf C ^ {n} $. | ||
+ | Then the following theorems hold. | ||
− | Schur's | + | Schur's first theorem: To the points $ ( c _ {0} \dots c _ {n-} 1 ) $ |
+ | on the boundary of $ B ^ {(} n) $ | ||
+ | there correspond in $ B $ | ||
+ | only rational functions of the form | ||
− | + | $$ | |
+ | |||
+ | \frac{\overline{ {\alpha _ {n-} 1 }}\; + \overline{ {\alpha _ {n-} 2 }}\; z + \dots + \overline{ {\alpha _ {0} }}\; z ^ {n-} 1 }{\alpha _ {0} + \alpha _ {1} z + \dots + \alpha _ {n-} 1 z ^ {n-} 1 } | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | Schur's second theorem: A necessary and sufficient condition for $ ( c _ {0} \dots c _ {n-} 1 ) $ | ||
+ | to be an interior point of $ B ^ {(} n) $ | ||
+ | is that the following inequalities hold for $ k = 1 \dots n $: | ||
+ | |||
+ | $$ | ||
+ | \left | | ||
+ | |||
+ | \begin{array}{llllllll} | ||
+ | 1 & 0 &\cdot & 0 &c _ {0} &c _ {1} &\cdot &c _ {k-} 1 \\ | ||
+ | 0 & 1 &\cdot & 0 & 0 &c _ {0} &\cdot &c _ {k-} 2 \\ | ||
+ | \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ | ||
+ | 0 & 0 &\cdot & 1 & 0 & 0 &\cdot &c _ {0} \\ | ||
+ | \overline{ {c _ {0} }}\; & 0 &\cdot & 0 & 1 & 0 &\cdot & 0 \\ | ||
+ | \overline{ {c _ {1} }}\; &\overline{ {c _ {0} }}\; &\cdot & 0 & 0 & 1 &\cdot & 0 \\ | ||
+ | \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ | ||
+ | \overline{ {c _ {k-} 1 }}\; &\overline{ {c _ {k-} 2 }}\; &\cdot &{c _ {0} } bar & 0 & 0 &\cdot & 1 \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right | > 0. | ||
+ | $$ | ||
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | ||
Line 13: | Line 65: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" ''J. Reine Angew. Math.'' , '''147''' (1917) pp. 205–232</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Lehrbuch der Funktionentheorie" , '''2''' , Teubner (1931)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" ''J. Reine Angew. Math.'' , '''147''' (1917) pp. 205–232</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Lehrbuch der Funktionentheorie" , '''2''' , Teubner (1931)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40</TD></TR></table> |
Revision as of 14:55, 7 June 2020
Theorems for finding a solution to the coefficient problem for bounded analytic functions. They were obtained by I. Schur [1]. Let $ B $
be the class of regular functions $ f( z) = c _ {0} + c _ {1} z + \dots $
in $ | z | < 1 $
satisfying in it the condition $ | f( z ) | \leq 1 $.
Let $ \mathbf C ^ {n} $,
$ n \geq 1 $,
be the $ n $-
dimensional complex Euclidean space, its points are $ n $-
tuples of complex numbers $ ( c _ {0} \dots c _ {n-} 1 ) $;
let $ B ^ {(} n) $
be a set of points $ ( c _ {0} \dots c _ {n-} 1 ) \in \mathbf C ^ {n} $
such that the numbers $ c _ {0} \dots c _ {n-} 1 $
are the first $ n $
coefficients of some function from $ B $.
The sets $ B ^ {(} n) $
are closed, bounded and convex in $ \mathbf C ^ {n} $.
Then the following theorems hold.
Schur's first theorem: To the points $ ( c _ {0} \dots c _ {n-} 1 ) $ on the boundary of $ B ^ {(} n) $ there correspond in $ B $ only rational functions of the form
$$ \frac{\overline{ {\alpha _ {n-} 1 }}\; + \overline{ {\alpha _ {n-} 2 }}\; z + \dots + \overline{ {\alpha _ {0} }}\; z ^ {n-} 1 }{\alpha _ {0} + \alpha _ {1} z + \dots + \alpha _ {n-} 1 z ^ {n-} 1 } . $$
Schur's second theorem: A necessary and sufficient condition for $ ( c _ {0} \dots c _ {n-} 1 ) $ to be an interior point of $ B ^ {(} n) $ is that the following inequalities hold for $ k = 1 \dots n $:
$$ \left | \begin{array}{llllllll} 1 & 0 &\cdot & 0 &c _ {0} &c _ {1} &\cdot &c _ {k-} 1 \\ 0 & 1 &\cdot & 0 & 0 &c _ {0} &\cdot &c _ {k-} 2 \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ 0 & 0 &\cdot & 1 & 0 & 0 &\cdot &c _ {0} \\ \overline{ {c _ {0} }}\; & 0 &\cdot & 0 & 1 & 0 &\cdot & 0 \\ \overline{ {c _ {1} }}\; &\overline{ {c _ {0} }}\; &\cdot & 0 & 0 & 1 &\cdot & 0 \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ \overline{ {c _ {k-} 1 }}\; &\overline{ {c _ {k-} 2 }}\; &\cdot &{c _ {0} } bar & 0 & 0 &\cdot & 1 \\ \end{array} \right | > 0. $$
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.
References
[1] | I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" J. Reine Angew. Math. , 147 (1917) pp. 205–232 |
[2] | L. Bieberbach, "Lehrbuch der Funktionentheorie" , 2 , Teubner (1931) |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Comments
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |
[a2] | J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40 |
Schur theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_theorems&oldid=49576