Difference between revisions of "Riemannian connection"
Ulf Rehmann (talk | contribs) m (Undo revision 48557 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0821101.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/R082/R.0802110 Riemannian connection | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An [[Affine connection|affine connection]] on a [[Riemannian space|Riemannian space]] $ M $ | |
+ | with respect to which the [[Metric tensor|metric tensor]] $ g _ {ij} $ | ||
+ | of the space is covariantly constant. If the affine connection on $ M $ | ||
+ | is given by a matrix of local connection forms | ||
− | + | $$ \tag{1 } | |
+ | \left . | ||
− | + | \begin{array}{c} | |
+ | \omega ^ {i} = \Gamma _ {k} ^ {i} dx ^ {k} ,\ \mathop{\rm det} | \Gamma _ {k} ^ {i} | | ||
+ | \neq 0, \\ | ||
+ | \omega _ {j} ^ {i} = \Gamma _ {jk} ^ {i} dx ^ {k} \\ | ||
+ | \end{array} | ||
− | + | \right \} | |
+ | $$ | ||
− | + | and the metric form on $ M $ | |
+ | is $ ds ^ {2} = g _ {ij} \omega ^ {i} \omega ^ {j} $, | ||
+ | then the latter condition is expressed as | ||
− | + | $$ \tag{2 } | |
+ | dg _ {ij} = g _ {kj} \omega _ {i} ^ {k} + g _ {ik} \omega _ {j} ^ {k} . | ||
+ | $$ | ||
− | + | It can be also expressed as follows: Under [[Parallel displacement(2)|parallel displacement]] along any curve in $ M $, | |
+ | the scalar product $ \langle X, Y\rangle = g _ {ij} \omega ^ {i} ( X) \omega ^ {j} ( Y) $ | ||
+ | of two arbitrary vectors preserves its value, i.e. for vector fields $ X, Y, Z $ | ||
+ | on $ M $ | ||
+ | the following equality holds: | ||
− | + | $$ | |
+ | Z\langle X, Y> = < \nabla _ {Z} X, Y\rangle + \langle X, \nabla _ {Z} Y\rangle, | ||
+ | $$ | ||
− | + | where $ \nabla _ {Z} X $ | |
+ | is the vector field, called the [[Covariant derivative|covariant derivative]] of the field $ X $ | ||
+ | relative to the field $ Z $, | ||
+ | defined by the formula | ||
− | + | $$ | |
+ | \omega ^ {i} ( \nabla _ {Z} X) = Z \omega ^ {i} ( X) + \omega _ {k} ^ {i} ( Z) | ||
+ | \omega ^ {k} ( X). | ||
+ | $$ | ||
− | + | If in $ M $ | |
+ | one goes over to a local field of orthonormal frames, then $ g _ {ij} = \delta _ {ij} $( | ||
+ | if one restricts to the case of a positive-definite $ ds ^ {2} $) | ||
+ | and condition (2) takes the form | ||
+ | |||
+ | $$ | ||
+ | \omega _ {i} ^ {j} + \omega _ {j} ^ {i} = 0, | ||
+ | $$ | ||
+ | |||
+ | i.e. the matrix $ \omega $ | ||
+ | of forms (1) takes values in the Lie algebra of the group of motions of the Euclidean space $ E ^ {n} $ | ||
+ | of dimension $ n = \mathop{\rm dim} M $. | ||
+ | Thus, a Riemannian connection can be interpreted as a connection in the fibre space of orthonormal frames in the Euclidean spaces tangent to $ M $. | ||
+ | The [[Holonomy group|holonomy group]] of a Riemannian connection is a subgroup of the group of motions of $ E ^ {n} $; | ||
+ | a Riemannian connection for some Riemannian metric on $ M $ | ||
+ | is any affine connection whose holonomy group is the group of motions or some subgroup of it. | ||
+ | |||
+ | If in (1) $ \omega ^ {i} = dx ^ {i} $( | ||
+ | i.e. $ M $ | ||
+ | is considered with respect to the field of natural frames of a local coordinate system), then | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \frac{\partial g _ {ij} }{\partial x ^ {l} } | ||
+ | = g _ {kj} \Gamma _ {il} ^ {k} + | ||
+ | g _ {ik} \Gamma _ {jl} ^ {k} , | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \Gamma _ {ij} ^ {k} = \left \{ \begin{array}{c} | ||
+ | k \\ | ||
+ | ij | ||
+ | \end{array} | ||
+ | \right \} - | ||
+ | \frac{1}{2} | ||
+ | S _ {ij} ^ {k} - g ^ {kl} g _ {m(} i S _ {j)} l ^ {m} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \left \{ \begin{array}{c} | ||
+ | k \\ | ||
+ | ij | ||
+ | \end{array} | ||
+ | \right \} = \ | ||
− | + | \frac{1}{2} | |
+ | g ^ {kl} \left ( | ||
+ | \frac{\partial g _ {li} }{\partial x ^ {j} } | ||
+ | + | ||
+ | \frac{\partial | ||
+ | g _ {lj} }{\partial x ^ {i} } | ||
+ | - | ||
+ | \frac{\partial g _ {ij} }{\partial x ^ {l} } | ||
− | + | \right ) | |
+ | $$ | ||
+ | |||
+ | is the so-called [[Christoffel symbol|Christoffel symbol]] and $ S _ {ij} ^ {k} = \Gamma _ {ij} ^ {k} - \Gamma _ {jk} ^ {k} $ | ||
+ | is the [[Torsion tensor|torsion tensor]] of the Riemannian connection. There exists one and only one Riemannian connection without torsion (i.e. such that $ S _ {ij} ^ {k} = 0 $); | ||
+ | it is determined by the forms | ||
+ | |||
+ | $$ | ||
+ | \omega _ {j} ^ {i} = \left \{ \begin{array}{c} | ||
+ | i \\ | ||
+ | jk | ||
+ | \end{array} | ||
+ | \right \} dx ^ {k} , | ||
+ | $$ | ||
and it is called the [[Levi-Civita connection|Levi-Civita connection]]. | and it is called the [[Levi-Civita connection|Levi-Civita connection]]. | ||
Line 41: | Line 133: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 14:55, 7 June 2020
An affine connection on a Riemannian space $ M $
with respect to which the metric tensor $ g _ {ij} $
of the space is covariantly constant. If the affine connection on $ M $
is given by a matrix of local connection forms
$$ \tag{1 } \left . \begin{array}{c} \omega ^ {i} = \Gamma _ {k} ^ {i} dx ^ {k} ,\ \mathop{\rm det} | \Gamma _ {k} ^ {i} | \neq 0, \\ \omega _ {j} ^ {i} = \Gamma _ {jk} ^ {i} dx ^ {k} \\ \end{array} \right \} $$
and the metric form on $ M $ is $ ds ^ {2} = g _ {ij} \omega ^ {i} \omega ^ {j} $, then the latter condition is expressed as
$$ \tag{2 } dg _ {ij} = g _ {kj} \omega _ {i} ^ {k} + g _ {ik} \omega _ {j} ^ {k} . $$
It can be also expressed as follows: Under parallel displacement along any curve in $ M $, the scalar product $ \langle X, Y\rangle = g _ {ij} \omega ^ {i} ( X) \omega ^ {j} ( Y) $ of two arbitrary vectors preserves its value, i.e. for vector fields $ X, Y, Z $ on $ M $ the following equality holds:
$$ Z\langle X, Y> = < \nabla _ {Z} X, Y\rangle + \langle X, \nabla _ {Z} Y\rangle, $$
where $ \nabla _ {Z} X $ is the vector field, called the covariant derivative of the field $ X $ relative to the field $ Z $, defined by the formula
$$ \omega ^ {i} ( \nabla _ {Z} X) = Z \omega ^ {i} ( X) + \omega _ {k} ^ {i} ( Z) \omega ^ {k} ( X). $$
If in $ M $ one goes over to a local field of orthonormal frames, then $ g _ {ij} = \delta _ {ij} $( if one restricts to the case of a positive-definite $ ds ^ {2} $) and condition (2) takes the form
$$ \omega _ {i} ^ {j} + \omega _ {j} ^ {i} = 0, $$
i.e. the matrix $ \omega $ of forms (1) takes values in the Lie algebra of the group of motions of the Euclidean space $ E ^ {n} $ of dimension $ n = \mathop{\rm dim} M $. Thus, a Riemannian connection can be interpreted as a connection in the fibre space of orthonormal frames in the Euclidean spaces tangent to $ M $. The holonomy group of a Riemannian connection is a subgroup of the group of motions of $ E ^ {n} $; a Riemannian connection for some Riemannian metric on $ M $ is any affine connection whose holonomy group is the group of motions or some subgroup of it.
If in (1) $ \omega ^ {i} = dx ^ {i} $( i.e. $ M $ is considered with respect to the field of natural frames of a local coordinate system), then
$$ \frac{\partial g _ {ij} }{\partial x ^ {l} } = g _ {kj} \Gamma _ {il} ^ {k} + g _ {ik} \Gamma _ {jl} ^ {k} , $$
and
$$ \Gamma _ {ij} ^ {k} = \left \{ \begin{array}{c} k \\ ij \end{array} \right \} - \frac{1}{2} S _ {ij} ^ {k} - g ^ {kl} g _ {m(} i S _ {j)} l ^ {m} , $$
where
$$ \left \{ \begin{array}{c} k \\ ij \end{array} \right \} = \ \frac{1}{2} g ^ {kl} \left ( \frac{\partial g _ {li} }{\partial x ^ {j} } + \frac{\partial g _ {lj} }{\partial x ^ {i} } - \frac{\partial g _ {ij} }{\partial x ^ {l} } \right ) $$
is the so-called Christoffel symbol and $ S _ {ij} ^ {k} = \Gamma _ {ij} ^ {k} - \Gamma _ {jk} ^ {k} $ is the torsion tensor of the Riemannian connection. There exists one and only one Riemannian connection without torsion (i.e. such that $ S _ {ij} ^ {k} = 0 $); it is determined by the forms
$$ \omega _ {j} ^ {i} = \left \{ \begin{array}{c} i \\ jk \end{array} \right \} dx ^ {k} , $$
and it is called the Levi-Civita connection.
References
[1] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
[2] | A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French) |
Comments
Instead of "Riemannian connection" one also uses metric connection.
References
[a1] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
Riemannian connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemannian_connection&oldid=49564