Namespaces
Variants
Actions

Difference between revisions of "Recursive predicate"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Undo revision 48459 by Ulf Rehmann (talk))
Tag: Undo
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Predicate|predicate]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080300/r0803001.png" /> defined on the natural numbers, such that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080300/r0803002.png" /> defined on the natural numbers by the condition
+
<!--
 +
r0803001.png
 +
$#A+1 = 3 n = 0
 +
$#C+1 = 3 : ~/encyclopedia/old_files/data/R080/R.0800300 Recursive predicate
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080300/r0803003.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Predicate|predicate]]  $  P( x _ {1} \dots x _ {n} ) $
 +
defined on the natural numbers, such that the function  $  f $
 +
defined on the natural numbers by the condition
 +
 
 +
$$
 +
f( x _ {1} \dots x _ {n} )  = \left \{
 +
 
 +
\begin{array}{ll}
 +
1  & \textrm{ if }  P( x _ {1} \dots x _ {n} )  \textrm{ is  true  },  \\
 +
0 & \textrm{ if }  P( x _ {1} \dots x _ {n} )  \textrm{ is  false  } ,  \\
 +
\end{array}
 +
 
 +
\right .$$
  
 
is a [[Recursive function|recursive function]].
 
is a [[Recursive function|recursive function]].

Latest revision as of 14:55, 7 June 2020


A predicate $ P( x _ {1} \dots x _ {n} ) $ defined on the natural numbers, such that the function $ f $ defined on the natural numbers by the condition

$$ f( x _ {1} \dots x _ {n} ) = \left \{ \begin{array}{ll} 1 & \textrm{ if } P( x _ {1} \dots x _ {n} ) \textrm{ is true }, \\ 0 & \textrm{ if } P( x _ {1} \dots x _ {n} ) \textrm{ is false } , \\ \end{array} \right .$$

is a recursive function.

How to Cite This Entry:
Recursive predicate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Recursive_predicate&oldid=49554
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article