|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | p0747103.png |
| + | $#A+1 = 99 n = 0 |
| + | $#C+1 = 99 : ~/encyclopedia/old_files/data/P074/P.0704710 Principal \BMI G\EMI\AAhobject |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''in a category'' | | ''in a category'' |
| | | |
− | A concept in the theory of categories, instances of which are a [[Principal fibre bundle|principal fibre bundle]] in topology, a [[Principal homogeneous space|principal homogeneous space]] in algebraic geometry, etc. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747103.png" /> be a [[Group object|group object]] in a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747104.png" /> with products and final object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747105.png" />. An object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747106.png" /> is said to be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747107.png" />-object if there is given a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747108.png" /> for which the following diagrams are commutative: | + | A concept in the theory of categories, instances of which are a [[Principal fibre bundle|principal fibre bundle]] in topology, a [[Principal homogeneous space|principal homogeneous space]] in algebraic geometry, etc. Let $ G $ |
| + | be a [[Group object|group object]] in a category $ C $ |
| + | with products and final object $ e $. |
| + | An object $ P $ |
| + | is said to be a $ G $- |
| + | object if there is given a morphism $ \pi : P \times G \rightarrow P $ |
| + | for which the following diagrams are commutative: |
| + | |
| + | $$ |
| + | |
| + | \begin{array}{ccc} |
| + | P \times G \times G &\rightarrow ^ { {1 _ P} \times \mu } &P \times G \\ |
| + | size - 3 {\pi \times 1 _ {G} } \downarrow &{} &\downarrow size - 3 \pi \\ |
| + | P \times G & \mathop \rightarrow \limits _ \pi & P \\ |
| + | \end{array} |
| + | \ \ \ \ |
| + | |
| + | \begin{array}{ccc} |
| + | P \times e &\rightarrow ^ { {1 _ P} \times \beta } &P \times G \\ |
| + | size - 3 {pr _ {1} } \downarrow &{} &\downarrow size - 3 \pi \\ |
| + | P & \mathop \rightarrow \limits _ { {1 _ {P} }} &P. \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p0747109.png" /></td> </tr></table>
| + | $$ |
| | | |
− | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471010.png" /> is the group law morphism on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471011.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471012.png" /> is the unit element morphism into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471013.png" />. More precisely, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471014.png" />-objects specified as above are called right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471016.png" />-objects; the definition of left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471018.png" />-objects is similar. As an example of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471019.png" />-object one may take the group object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471020.png" /> itself, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471021.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471022.png" />. This object is called the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471024.png" />-object. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471025.png" />-objects in the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471026.png" /> form a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471027.png" />. The morphisms are morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471029.png" /> which commute with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471030.png" /> (i.e. such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471031.png" />). A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471032.png" />-object is said to be a formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471034.png" />-object if the morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471036.png" /> induce an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471037.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471038.png" /> is some [[Grothendieck topology|Grothendieck topology]] on the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471039.png" />, a formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471040.png" />-object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471041.png" /> is called a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471042.png" />-object (with respect to the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471043.png" />) if there exists a covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471044.png" /> of the final object such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471045.png" /> the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471046.png" /> is isomorphic to the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471047.png" />-object. | + | Here $ \mu : G \times G \rightarrow G $ |
| + | is the group law morphism on $ G $, |
| + | while $ \beta : e \rightarrow G $ |
| + | is the unit element morphism into $ G $. |
| + | More precisely, the $ G $- |
| + | objects specified as above are called right $ G $- |
| + | objects; the definition of left $ G $- |
| + | objects is similar. As an example of a $ G $- |
| + | object one may take the group object $ G $ |
| + | itself, for which $ \mu $ |
| + | coincides with $ \pi $. |
| + | This object is called the trivial $ G $- |
| + | object. The $ G $- |
| + | objects in the category $ C $ |
| + | form a category $ C ^ {G} $. |
| + | The morphisms are morphism $ \phi : P \rightarrow P ^ \prime $ |
| + | of $ C $ |
| + | which commute with $ \pi $( |
| + | i.e. such that $ \pi ^ \prime ( \phi \times 1 ) = \phi \pi $). |
| + | A $ G $- |
| + | object is said to be a formal principal $ G $- |
| + | object if the morphisms $ pr _ {1} : P \times G \rightarrow P $ |
| + | and $ \pi : P \times G \rightarrow P $ |
| + | induce an isomorphism $ \phi = ( \pi , pr _ {1} ): P \times G \rightarrow P \times P $. |
| + | If $ T $ |
| + | is some [[Grothendieck topology|Grothendieck topology]] on the category $ C $, |
| + | a formal principal $ G $- |
| + | object $ P $ |
| + | is called a principal $ G $- |
| + | object (with respect to the topology $ T $) |
| + | if there exists a covering $ ( U _ {i} \rightarrow e ) _ {i \in I } $ |
| + | of the final object such that for any $ i \in I $ |
| + | the product $ G \times _ {e} U _ {i} $ |
| + | is isomorphic to the trivial $ G \times _ {e} U _ {i} $- |
| + | object. |
| | | |
| ===Examples.=== | | ===Examples.=== |
| | | |
| + | 1) If $ C $ |
| + | is the category of sets and $ G $ |
| + | is a group, then the non-empty $ G $- |
| + | objects are called $ G $- |
| + | sets. These are sets $ P $ |
| + | for which a mapping $ P \times G \rightarrow P $( |
| + | $ ( p, g) \rightarrow pg $) |
| + | is defined such that for any $ g, g ^ \prime \in G $ |
| + | one has $ p( g g ^ \prime ) = ( pg) g ^ \prime $, |
| + | and for any $ p \in P $ |
| + | it is true that $ p \cdot 1 = p $. |
| + | A principal $ G $- |
| + | object is a $ G $- |
| + | set in which for any $ p, p ^ \prime \in P $ |
| + | there exists a unique element $ g \in G $ |
| + | such that $ pg = p ^ \prime $( |
| + | a principal homogeneous $ G $- |
| + | set). If $ P $ |
| + | is not empty, the choice of a $ p _ {0} \in P $ |
| + | determines a mapping $ g \rightarrow p _ {0} g $ |
| + | which establishes an isomorphism between $ P $ |
| + | and the trivial $ G $- |
| + | set $ G $. |
| + | Thus, in any topology a formal principal $ G $- |
| + | object is a principal $ G $- |
| + | object. |
| | | |
− | 1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471048.png" /> is the category of sets and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471049.png" /> is a group, then the non-empty <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471050.png" />-objects are called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471051.png" />-sets. These are sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471052.png" /> for which a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471053.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471054.png" />) is defined such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471056.png" />, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471057.png" /> it is true that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471058.png" />. A principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471059.png" />-object is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471060.png" />-set in which for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471061.png" /> there exists a unique element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471062.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471063.png" /> (a principal homogeneous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471065.png" />-set). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471066.png" /> is not empty, the choice of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471067.png" /> determines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471068.png" /> which establishes an isomorphism between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471069.png" /> and the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471070.png" />-set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471071.png" />. Thus, in any topology a formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471072.png" />-object is a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471073.png" />-object.
| + | 2) If $ X $ |
− | | + | is a differentiable manifold and $ H $ |
− | 2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471074.png" /> is a differentiable manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471075.png" /> is a Lie group, then, taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471076.png" /> to be the category of fibrations over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471077.png" />, taking as group object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471078.png" /> the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471079.png" />, and defining a topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471080.png" /> with the aid of families of open coverings, it is possible to obtain the definition of a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471081.png" />-fibration.
| + | is a Lie group, then, taking $ C $ |
| + | to be the category of fibrations over $ X $, |
| + | taking as group object $ G $ |
| + | the projection $ H \times X \rightarrow X $, |
| + | and defining a topology in $ C $ |
| + | with the aid of families of open coverings, it is possible to obtain the definition of a principal $ G $- |
| + | fibration. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471082.png" /> is a formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471083.png" />-object in a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471084.png" />, then for any object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471085.png" /> in the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471086.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471087.png" /> is either empty or is a principal homogeneous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471088.png" />-set. | + | If $ P $ |
| + | is a formal principal $ G $- |
| + | object in a category $ C $, |
| + | then for any object $ X $ |
| + | in the category $ \mathop{\rm Ob} ( C) $ |
| + | the set $ P( X) = \mathop{\rm Hom} _ {C} ( X, P ) $ |
| + | is either empty or is a principal homogeneous $ G( X) $- |
| + | set. |
| | | |
− | A formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471089.png" />-object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471090.png" /> is isomorphic to the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471091.png" />-object if and only if there exists a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471092.png" />. The set of isomorphism classes of formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471093.png" />-objects is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471094.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471095.png" /> is an Abelian group object, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471096.png" />, with the class of trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471097.png" />-objects as a base point, is a group and can be computed by standard tools of homological algebra. In general, in the computation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471098.png" /> Čech homology constructions are employed (cf. [[Non-Abelian cohomology|Non-Abelian cohomology]]). | + | A formal principal $ G $- |
| + | object $ P $ |
| + | is isomorphic to the trivial $ G $- |
| + | object if and only if there exists a section $ e \rightarrow P $. |
| + | The set of isomorphism classes of formal principal $ G $- |
| + | objects is denoted by $ H ^ {1} ( C, G) $. |
| + | If $ G $ |
| + | is an Abelian group object, then the set $ H ^ {1} ( C, G ) $, |
| + | with the class of trivial $ G $- |
| + | objects as a base point, is a group and can be computed by standard tools of homological algebra. In general, in the computation of $ H ^ {1} ( C, G) $ |
| + | Čech homology constructions are employed (cf. [[Non-Abelian cohomology|Non-Abelian cohomology]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971) {{MR|0354651}} {{ZBL|1039.14001}} </TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971) {{MR|0354651}} {{ZBL|1039.14001}} </TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | Formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471099.png" />-objects are commonly called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710101.png" />-torsors. The distinction between formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710102.png" />-objects and principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710103.png" />-objects is not a profound one: a necessary and sufficient condition for a formal principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710104.png" />-object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710105.png" /> to be principal is that the unique morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png" /> should form a covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710107.png" />. | + | Formal principal $ G $- |
| + | objects are commonly called $ G $- |
| + | torsors. The distinction between formal principal $ G $- |
| + | objects and principal $ G $- |
| + | objects is not a profound one: a necessary and sufficient condition for a formal principal $ G $- |
| + | object $ P $ |
| + | to be principal is that the unique morphism $ P \rightarrow e $ |
| + | should form a covering of $ e $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Giraud, "Cohomologie non abélienne" , Springer (1971) {{MR|0344253}} {{ZBL|0226.14011}} </TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Giraud, "Cohomologie non abélienne" , Springer (1971) {{MR|0344253}} {{ZBL|0226.14011}} </TD></TR></table> |
in a category
A concept in the theory of categories, instances of which are a principal fibre bundle in topology, a principal homogeneous space in algebraic geometry, etc. Let $ G $
be a group object in a category $ C $
with products and final object $ e $.
An object $ P $
is said to be a $ G $-
object if there is given a morphism $ \pi : P \times G \rightarrow P $
for which the following diagrams are commutative:
$$
\begin{array}{ccc}
P \times G \times G &\rightarrow ^ { {1 _ P} \times \mu } &P \times G \\
size - 3 {\pi \times 1 _ {G} } \downarrow &{} &\downarrow size - 3 \pi \\
P \times G & \mathop \rightarrow \limits _ \pi & P \\
\end{array}
\ \ \ \
\begin{array}{ccc}
P \times e &\rightarrow ^ { {1 _ P} \times \beta } &P \times G \\
size - 3 {pr _ {1} } \downarrow &{} &\downarrow size - 3 \pi \\
P & \mathop \rightarrow \limits _ { {1 _ {P} }} &P. \\
\end{array}
$$
Here $ \mu : G \times G \rightarrow G $
is the group law morphism on $ G $,
while $ \beta : e \rightarrow G $
is the unit element morphism into $ G $.
More precisely, the $ G $-
objects specified as above are called right $ G $-
objects; the definition of left $ G $-
objects is similar. As an example of a $ G $-
object one may take the group object $ G $
itself, for which $ \mu $
coincides with $ \pi $.
This object is called the trivial $ G $-
object. The $ G $-
objects in the category $ C $
form a category $ C ^ {G} $.
The morphisms are morphism $ \phi : P \rightarrow P ^ \prime $
of $ C $
which commute with $ \pi $(
i.e. such that $ \pi ^ \prime ( \phi \times 1 ) = \phi \pi $).
A $ G $-
object is said to be a formal principal $ G $-
object if the morphisms $ pr _ {1} : P \times G \rightarrow P $
and $ \pi : P \times G \rightarrow P $
induce an isomorphism $ \phi = ( \pi , pr _ {1} ): P \times G \rightarrow P \times P $.
If $ T $
is some Grothendieck topology on the category $ C $,
a formal principal $ G $-
object $ P $
is called a principal $ G $-
object (with respect to the topology $ T $)
if there exists a covering $ ( U _ {i} \rightarrow e ) _ {i \in I } $
of the final object such that for any $ i \in I $
the product $ G \times _ {e} U _ {i} $
is isomorphic to the trivial $ G \times _ {e} U _ {i} $-
object.
Examples.
1) If $ C $
is the category of sets and $ G $
is a group, then the non-empty $ G $-
objects are called $ G $-
sets. These are sets $ P $
for which a mapping $ P \times G \rightarrow P $(
$ ( p, g) \rightarrow pg $)
is defined such that for any $ g, g ^ \prime \in G $
one has $ p( g g ^ \prime ) = ( pg) g ^ \prime $,
and for any $ p \in P $
it is true that $ p \cdot 1 = p $.
A principal $ G $-
object is a $ G $-
set in which for any $ p, p ^ \prime \in P $
there exists a unique element $ g \in G $
such that $ pg = p ^ \prime $(
a principal homogeneous $ G $-
set). If $ P $
is not empty, the choice of a $ p _ {0} \in P $
determines a mapping $ g \rightarrow p _ {0} g $
which establishes an isomorphism between $ P $
and the trivial $ G $-
set $ G $.
Thus, in any topology a formal principal $ G $-
object is a principal $ G $-
object.
2) If $ X $
is a differentiable manifold and $ H $
is a Lie group, then, taking $ C $
to be the category of fibrations over $ X $,
taking as group object $ G $
the projection $ H \times X \rightarrow X $,
and defining a topology in $ C $
with the aid of families of open coverings, it is possible to obtain the definition of a principal $ G $-
fibration.
If $ P $
is a formal principal $ G $-
object in a category $ C $,
then for any object $ X $
in the category $ \mathop{\rm Ob} ( C) $
the set $ P( X) = \mathop{\rm Hom} _ {C} ( X, P ) $
is either empty or is a principal homogeneous $ G( X) $-
set.
A formal principal $ G $-
object $ P $
is isomorphic to the trivial $ G $-
object if and only if there exists a section $ e \rightarrow P $.
The set of isomorphism classes of formal principal $ G $-
objects is denoted by $ H ^ {1} ( C, G) $.
If $ G $
is an Abelian group object, then the set $ H ^ {1} ( C, G ) $,
with the class of trivial $ G $-
objects as a base point, is a group and can be computed by standard tools of homological algebra. In general, in the computation of $ H ^ {1} ( C, G) $
Čech homology constructions are employed (cf. Non-Abelian cohomology).
References
[1] | A. Grothendieck (ed.) et al. (ed.) , Revêtements étales et groupe fondamental. SGA 1 , Lect. notes in math. , 224 , Springer (1971) MR0354651 Zbl 1039.14001 |
Formal principal $ G $-
objects are commonly called $ G $-
torsors. The distinction between formal principal $ G $-
objects and principal $ G $-
objects is not a profound one: a necessary and sufficient condition for a formal principal $ G $-
object $ P $
to be principal is that the unique morphism $ P \rightarrow e $
should form a covering of $ e $.
References