Difference between revisions of "Perron-Frobenius theorem"
Ulf Rehmann (talk | contribs) m (Undo revision 48164 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0723501.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/P072/P.0702350 Perron\ANDFrobenius theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | Let a real square $ ( n \times n) $- | ||
+ | matrix $ A $ | ||
+ | be considered as an operator on $ \mathbf R ^ {n} $, | ||
+ | let it be without invariant coordinate subspaces (such a matrix is called indecomposable) and let it be non-negative (i.e. all its elements are non-negative). Also, let $ \lambda _ {1} \dots \lambda _ {n} $ | ||
+ | be its eigen values, enumerated such that | ||
+ | |||
+ | $$ | ||
+ | | \lambda _ {1} | = \dots = | \lambda _ {h} | > | \lambda _ {h+} 1 | \geq \dots | ||
+ | \geq | \lambda _ {n} | ,\ \ | ||
+ | 1 \leq h \leq n. | ||
+ | $$ | ||
Then, | Then, | ||
− | 1) the number | + | 1) the number $ r = | \lambda _ {1} | $ |
+ | is a simple positive root of the [[Characteristic polynomial|characteristic polynomial]] of $ A $; | ||
− | 2) there exists an eigen vector of | + | 2) there exists an eigen vector of $ A $ |
+ | with positive coordinates corresponding to $ r $; | ||
− | 3) the numbers | + | 3) the numbers $ \lambda _ {1} \dots \lambda _ {h} $ |
+ | coincide, apart from their numbering, with the numbers $ r, \omega r \dots \omega ^ {h-} 1 r $, | ||
+ | where $ \omega = e ^ {2 \pi i/h } $; | ||
− | 4) the product of any eigen value of | + | 4) the product of any eigen value of $ A $ |
+ | by $ \omega $ | ||
+ | is an eigen value of $ A $; | ||
− | 5) for | + | 5) for $ h > 1 $ |
+ | one can find a permutation of the rows and columns that reduces $ A $ | ||
+ | to the form | ||
− | + | $$ | |
+ | \left \| | ||
− | where | + | \begin{array}{ccccc} |
+ | 0 &A _ {1} & 0 &\dots & 0 \\ | ||
+ | 0 & 0 &A _ {2} &\dots & 0 \\ | ||
+ | \dots &\dots &\dots &\dots &\dots \\ | ||
+ | 0 & 0 & 0 &\dots &A _ {h-} 1 \\ | ||
+ | A _ {h} & 0 & 0 &\dots & 0 \\ | ||
+ | \end{array} | ||
+ | \right \| , | ||
+ | $$ | ||
+ | |||
+ | where $ A _ {j} $ | ||
+ | is a matrix of order $ nh ^ {-} 1 $. | ||
O. Perron proved the assertions 1) and 2) for positive matrices in [[#References|[1]]], while G. Frobenius [[#References|[2]]] gave the full form of the theorem. | O. Perron proved the assertions 1) and 2) for positive matrices in [[#References|[1]]], while G. Frobenius [[#References|[2]]] gave the full form of the theorem. | ||
Line 23: | Line 63: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Perron, "Zur Theorie der Matrizen" ''Math. Ann.'' , '''64''' (1907) pp. 248–263</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Frobenius, "Ueber Matrizen aus nicht negativen Elementen" ''Sitzungsber. Königl. Preuss. Akad. Wiss.'' (1912) pp. 456–477</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Perron, "Zur Theorie der Matrizen" ''Math. Ann.'' , '''64''' (1907) pp. 248–263</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Frobenius, "Ueber Matrizen aus nicht negativen Elementen" ''Sitzungsber. Königl. Preuss. Akad. Wiss.'' (1912) pp. 456–477</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 14:54, 7 June 2020
Let a real square $ ( n \times n) $-
matrix $ A $
be considered as an operator on $ \mathbf R ^ {n} $,
let it be without invariant coordinate subspaces (such a matrix is called indecomposable) and let it be non-negative (i.e. all its elements are non-negative). Also, let $ \lambda _ {1} \dots \lambda _ {n} $
be its eigen values, enumerated such that
$$ | \lambda _ {1} | = \dots = | \lambda _ {h} | > | \lambda _ {h+} 1 | \geq \dots \geq | \lambda _ {n} | ,\ \ 1 \leq h \leq n. $$
Then,
1) the number $ r = | \lambda _ {1} | $ is a simple positive root of the characteristic polynomial of $ A $;
2) there exists an eigen vector of $ A $ with positive coordinates corresponding to $ r $;
3) the numbers $ \lambda _ {1} \dots \lambda _ {h} $ coincide, apart from their numbering, with the numbers $ r, \omega r \dots \omega ^ {h-} 1 r $, where $ \omega = e ^ {2 \pi i/h } $;
4) the product of any eigen value of $ A $ by $ \omega $ is an eigen value of $ A $;
5) for $ h > 1 $ one can find a permutation of the rows and columns that reduces $ A $ to the form
$$ \left \| \begin{array}{ccccc} 0 &A _ {1} & 0 &\dots & 0 \\ 0 & 0 &A _ {2} &\dots & 0 \\ \dots &\dots &\dots &\dots &\dots \\ 0 & 0 & 0 &\dots &A _ {h-} 1 \\ A _ {h} & 0 & 0 &\dots & 0 \\ \end{array} \right \| , $$
where $ A _ {j} $ is a matrix of order $ nh ^ {-} 1 $.
O. Perron proved the assertions 1) and 2) for positive matrices in [1], while G. Frobenius [2] gave the full form of the theorem.
References
[1] | O. Perron, "Zur Theorie der Matrizen" Math. Ann. , 64 (1907) pp. 248–263 |
[2] | G. Frobenius, "Ueber Matrizen aus nicht negativen Elementen" Sitzungsber. Königl. Preuss. Akad. Wiss. (1912) pp. 456–477 |
[3] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian) |
Comments
The Perron–Frobenius theorem has numerous applications, cf. [a1], [a2].
References
[a1] | E. Seneta, "Nonnegative matrices" , Allen & Unwin (1973) |
[a2] | K. Lancaster, "Mathematical economics" , Macmillan (1968) |
Perron-Frobenius theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perron-Frobenius_theorem&oldid=49522