Namespaces
Variants
Actions

Difference between revisions of "Pauli matrices"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Undo revision 48144 by Ulf Rehmann (talk))
Tag: Undo
m (tex encoded by computer)
Line 1: Line 1:
Certain special constant Hermitian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718601.png" />-matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718602.png" />) and magnetic moment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718603.png" /> of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718604.png" />) and can be obtained from the [[Dirac equation|Dirac equation]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718605.png" />. In explicit form the Pauli matrices are:
+
<!--
 +
p0718601.png
 +
$#A+1 = 41 n = 0
 +
$#C+1 = 41 : ~/encyclopedia/old_files/data/P071/P.0701860 Pauli matrices
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718606.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Their eigen values are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718607.png" />. The Pauli matrices satisfy the following algebraic relations:
+
Certain special constant Hermitian  $  ( 2 \times 2) $-
 +
matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ( $  \vec{s} = (\hbar /2) \\vec{sigma} $)
 +
and magnetic moment  $  ( \\vec{mu} = ( e \hbar /2mc) \\vec{sigma} ) $
 +
of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units  $  \hbar $)
 +
and can be obtained from the [[Dirac equation|Dirac equation]] for  $  v/c \ll  1 $.  
 +
In explicit form the Pauli matrices are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718608.png" /></td> </tr></table>
+
$$
 +
\sigma _ {1}  = \left (
 +
\begin{array}{lr}
 +
0  & 1  \\
 +
1  & 0  \\
 +
\end{array}
 +
\right ) ; \ \
 +
\sigma _ {2}  = \left (
 +
\begin{array}{lr}
 +
0  &- i  \\
 +
i  & 0  \\
 +
\end{array}
 +
\right ) ; \ \
 +
\sigma _ {3}  = \left (
 +
\begin{array}{lr}
 +
1  & 0  \\
 +
0 &- 1  \\
 +
\end{array}
 +
\right ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p0718609.png" /></td> </tr></table>
+
Their eigen values are  $  \pm  1 $.
 +
The Pauli matrices satisfy the following algebraic relations:
 +
 
 +
$$
 +
\sigma _ {i} \sigma _ {k} + \sigma _ {k} \sigma _ {i}  = 2 \delta _ {ik} ,
 +
$$
 +
 
 +
$$
 +
\sigma _ {i} \sigma _ {k} - \sigma _ {k} \sigma _ {i}  = 2i \epsilon _ {ikl} \sigma _ {l} .
 +
$$
  
 
Together with the unit matrix
 
Together with the unit matrix
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186010.png" /></td> </tr></table>
+
$$
 +
\sigma _ {0}  = \left (
 +
\begin{array}{lr}
 +
1  & 0  \\
 +
0  & 1  \\
 +
\end{array}
 +
\right )
 +
$$
 +
 
 +
the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions  $  \psi _ {A} $,
 +
$  A = 1, 2 $,
 +
and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle  $  \theta $
 +
around an axis with a directed unit vector  $  \mathbf n $,
 +
a spinor  $  \psi _ {A} $
 +
is transformed according to the formula
  
the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186012.png" />, and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186013.png" /> around an axis with a directed unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186014.png" />, a spinor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186015.png" /> is transformed according to the formula
+
$$
 +
\psi _ {A}  = \left [ \sigma _ {0,AB }  +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186016.png" /></td> </tr></table>
+
\frac{1}{2}
 +
i \theta ( \sigma \cdot \mathbf n ) _ {AB} \right ] \psi _ {B}  ^  \prime  ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186017.png" /></td> </tr></table>
+
$$
 +
\sigma \cdot \mathbf n  = \sigma _ {1} n _ {x} + \sigma _ {2} n _ {y} + \sigma _ {3} n _ {z} .
 +
$$
  
From the Pauli matrices one can form the [[Dirac matrices|Dirac matrices]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186019.png" />:
+
From the Pauli matrices one can form the [[Dirac matrices|Dirac matrices]] $  \gamma _  \alpha  $,
 +
$  \alpha = 0, 1, 2, 3 $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186020.png" /></td> </tr></table>
+
$$
 +
\gamma _ {0}  = \left (
 +
\begin{array}{lr}
 +
\sigma _ {0}  & 0  \\
 +
0  &-
 +
\sigma _ {0}  \\
 +
\end{array}
 +
\right ) ; \ \
 +
\gamma _ {k}  = \left (
 +
\begin{array}{lr}
 +
0  &\sigma _ {k}  \\
 +
- \sigma _ {k}  & 0  \\
 +
\end{array}
 +
\right ) ; \ \
 +
k = 1, 2, 3.
 +
$$
  
The real linear combinations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186024.png" /> form a four-dimensional subalgebra of the algebra of complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186025.png" />-matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186026.png" />. In this case they are generators of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186027.png" />-dimensional representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186028.png" /> and are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186031.png" />. Sometimes it is convenient to use the linear combinations
+
The real linear combinations of $  \sigma _ {0} $,  
 +
$  i \sigma _ {1} $,  
 +
$  i \sigma _ {2} $,  
 +
$  i \sigma _ {3} $
 +
form a four-dimensional subalgebra of the algebra of complex $  ( 2 \times 2) $-
 +
matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries $  \mathop{\rm SU} ( 2) $.  
 +
In this case they are generators of a $  2 $-
 +
dimensional representation of $  \mathop{\rm SU} ( 2) $
 +
and are denoted by $  \tau _ {1} $,  
 +
$  \tau _ {2} $
 +
and $  \tau _ {3} $.  
 +
Sometimes it is convenient to use the linear combinations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186032.png" /></td> </tr></table>
+
$$
 +
\tau  ^ {+}  =
 +
\frac{1}{2}
 +
( \tau _ {1} + i \tau _ {2} )  = \
 +
\left (
 +
\begin{array}{lr}
 +
0  & 1  \\
 +
0  & 0  \\
 +
\end{array}
 +
\right ) ; \ \
 +
\tau  ^ {-}  =
 +
\frac{1}{2}
 +
( \tau _ {1} - i \tau _ {2} )  = \
 +
\left (
 +
\begin{array}{lr}
 +
0  & 0  \\
 +
1  & 0 \\
 +
\end{array}
 +
\right ) .
 +
$$
  
In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186033.png" /> related by means of the following identities:
+
In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices $  S _  \alpha  $
 +
related by means of the following identities:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
S _ {0} S _ {0}  ^  \star  + \sigma _ {0}  = 0; \ \
 +
S _ {i} S _ {0}  ^  \star  = \sigma _ {i} ,\ \
 +
i = 1, 2, 3,
 +
$$
  
where the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186035.png" /> denotes complex conjugation. The matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186036.png" /> satisfy the commutator relations
+
where the symbol $  \star $
 +
denotes complex conjugation. The matrices $  S _  \alpha  $
 +
satisfy the commutator relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
S _  \alpha  S _  \beta  ^  \star  + S _  \beta  S _  \alpha  ^  \star  = 2 \eta _ {\alpha , \beta }  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186038.png" /> are the components of the metric tensor of the Minkowski space of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186039.png" />. The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:
+
where $  \eta _ {\alpha , \beta }  $
 +
are the components of the metric tensor of the Minkowski space of signature $  + 2 $.  
 +
The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186040.png" /></td> </tr></table>
+
$$
 +
S _  \alpha  S _  \beta  ^  \star  + S _  \beta  S _  \alpha  ^  \star  = 2g _ {\alpha \beta }  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071860/p07186041.png" /> are the components of the metric tensor of the curved space.
+
where $  g _ {\alpha \beta }  $
 +
are the components of the metric tensor of the curved space.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Pauli,  , ''Works on quantum theory'' , '''1–2''' , Moscow  (1975–1977)  (In Russian; translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.F. Nelina,  "Physics of elementary particles" , Moscow  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Bril,  J.A. Wheeler,  , ''The latest problems on gravitation'' , Moscow  (1961)  pp. 381–427  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Pauli,  , ''Works on quantum theory'' , '''1–2''' , Moscow  (1975–1977)  (In Russian; translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.F. Nelina,  "Physics of elementary particles" , Moscow  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Bril,  J.A. Wheeler,  , ''The latest problems on gravitation'' , Moscow  (1961)  pp. 381–427  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Pauli,  "Zur Quantenmechanik des magnetischen Elektrons"  ''Z. Phys.'' , '''43''' :  601</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Pauli (ed.) , ''Handbuch der Physik'' , '''24''' , Springer  (1933)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.M. Wald,  "General relativity" , Univ. Chicago Press  (1984)  pp. Chapt. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y. Choquet-Bruhat,  C. DeWitt-Morette,  M. Dillard-Bleick,  "Analysis, manifolds and physics" , North-Holland  (1982)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Pauli,  "Zur Quantenmechanik des magnetischen Elektrons"  ''Z. Phys.'' , '''43''' :  601</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Pauli (ed.) , ''Handbuch der Physik'' , '''24''' , Springer  (1933)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.M. Wald,  "General relativity" , Univ. Chicago Press  (1984)  pp. Chapt. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y. Choquet-Bruhat,  C. DeWitt-Morette,  M. Dillard-Bleick,  "Analysis, manifolds and physics" , North-Holland  (1982)  (Translated from French)</TD></TR></table>

Revision as of 14:54, 7 June 2020


Certain special constant Hermitian $ ( 2 \times 2) $- matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ( $ \vec{s} = (\hbar /2) \\vec{sigma} $) and magnetic moment $ ( \\vec{mu} = ( e \hbar /2mc) \\vec{sigma} ) $ of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units $ \hbar $) and can be obtained from the Dirac equation for $ v/c \ll 1 $. In explicit form the Pauli matrices are:

$$ \sigma _ {1} = \left ( \begin{array}{lr} 0 & 1 \\ 1 & 0 \\ \end{array} \right ) ; \ \ \sigma _ {2} = \left ( \begin{array}{lr} 0 &- i \\ i & 0 \\ \end{array} \right ) ; \ \ \sigma _ {3} = \left ( \begin{array}{lr} 1 & 0 \\ 0 &- 1 \\ \end{array} \right ) . $$

Their eigen values are $ \pm 1 $. The Pauli matrices satisfy the following algebraic relations:

$$ \sigma _ {i} \sigma _ {k} + \sigma _ {k} \sigma _ {i} = 2 \delta _ {ik} , $$

$$ \sigma _ {i} \sigma _ {k} - \sigma _ {k} \sigma _ {i} = 2i \epsilon _ {ikl} \sigma _ {l} . $$

Together with the unit matrix

$$ \sigma _ {0} = \left ( \begin{array}{lr} 1 & 0 \\ 0 & 1 \\ \end{array} \right ) $$

the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions $ \psi _ {A} $, $ A = 1, 2 $, and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle $ \theta $ around an axis with a directed unit vector $ \mathbf n $, a spinor $ \psi _ {A} $ is transformed according to the formula

$$ \psi _ {A} = \left [ \sigma _ {0,AB } + \frac{1}{2} i \theta ( \sigma \cdot \mathbf n ) _ {AB} \right ] \psi _ {B} ^ \prime , $$

$$ \sigma \cdot \mathbf n = \sigma _ {1} n _ {x} + \sigma _ {2} n _ {y} + \sigma _ {3} n _ {z} . $$

From the Pauli matrices one can form the Dirac matrices $ \gamma _ \alpha $, $ \alpha = 0, 1, 2, 3 $:

$$ \gamma _ {0} = \left ( \begin{array}{lr} \sigma _ {0} & 0 \\ 0 &- \sigma _ {0} \\ \end{array} \right ) ; \ \ \gamma _ {k} = \left ( \begin{array}{lr} 0 &\sigma _ {k} \\ - \sigma _ {k} & 0 \\ \end{array} \right ) ; \ \ k = 1, 2, 3. $$

The real linear combinations of $ \sigma _ {0} $, $ i \sigma _ {1} $, $ i \sigma _ {2} $, $ i \sigma _ {3} $ form a four-dimensional subalgebra of the algebra of complex $ ( 2 \times 2) $- matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. Quaternion. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries $ \mathop{\rm SU} ( 2) $. In this case they are generators of a $ 2 $- dimensional representation of $ \mathop{\rm SU} ( 2) $ and are denoted by $ \tau _ {1} $, $ \tau _ {2} $ and $ \tau _ {3} $. Sometimes it is convenient to use the linear combinations

$$ \tau ^ {+} = \frac{1}{2} ( \tau _ {1} + i \tau _ {2} ) = \ \left ( \begin{array}{lr} 0 & 1 \\ 0 & 0 \\ \end{array} \right ) ; \ \ \tau ^ {-} = \frac{1}{2} ( \tau _ {1} - i \tau _ {2} ) = \ \left ( \begin{array}{lr} 0 & 0 \\ 1 & 0 \\ \end{array} \right ) . $$

In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices $ S _ \alpha $ related by means of the following identities:

$$ \tag{1 } S _ {0} S _ {0} ^ \star + \sigma _ {0} = 0; \ \ S _ {i} S _ {0} ^ \star = \sigma _ {i} ,\ \ i = 1, 2, 3, $$

where the symbol $ \star $ denotes complex conjugation. The matrices $ S _ \alpha $ satisfy the commutator relations

$$ \tag{2 } S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2 \eta _ {\alpha , \beta } , $$

where $ \eta _ {\alpha , \beta } $ are the components of the metric tensor of the Minkowski space of signature $ + 2 $. The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:

$$ S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2g _ {\alpha \beta } , $$

where $ g _ {\alpha \beta } $ are the components of the metric tensor of the curved space.

References

[1] W. Pauli, , Works on quantum theory , 1–2 , Moscow (1975–1977) (In Russian; translated from German)
[2] N.F. Nelina, "Physics of elementary particles" , Moscow (1977) (In Russian)
[3] D. Bril, J.A. Wheeler, , The latest problems on gravitation , Moscow (1961) pp. 381–427 (In Russian)

Comments

References

[a1] W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" Z. Phys. , 43 : 601
[a2] W. Pauli (ed.) , Handbuch der Physik , 24 , Springer (1933)
[a3] R.M. Wald, "General relativity" , Univ. Chicago Press (1984) pp. Chapt. 4
[a4] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1982) (Translated from French)
How to Cite This Entry:
Pauli matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pauli_matrices&oldid=49519
This article was adapted from an original article by V.G. Krechet (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article