Difference between revisions of "Seifert matrix"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48646 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. [[Knot theory|Knot theory]]). Named after H. Seifert [[#References|[1]]], who applied the construction to obtain algebraic invariants of one-dimensional knots in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838401.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838402.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838403.png" />-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838404.png" />-component [[Link|link]], i.e. a pair consisting of an oriented sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838405.png" /> and a differentiable or piecewise-linear oriented submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838406.png" /> of this sphere which is homeomorphic to the disconnected union of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838407.png" /> copies of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838408.png" />. There exists a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838409.png" />-dimensional orientable submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384011.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384012.png" />; it is known as the Seifert manifold of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384013.png" />. The orientation of the Seifert manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384014.png" /> is determined by the orientation of its boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384015.png" />; since the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384016.png" /> is fixed, the normal bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384018.png" /> turns out to be oriented, so that one can speak of the field of positive normals to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384019.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384020.png" /> be a small displacement along this field, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384021.png" /> is the complement to an open tubular neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384024.png" /> is odd, one defines a pairing |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384025.png" /></td> </tr></table> | |
− | |||
− | + | associating with an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384026.png" /> the [[Linking coefficient|linking coefficient]] of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384028.png" />. This <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384029.png" /> is known as the Seifert pairing of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384032.png" /> are of finite order, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384033.png" />. The following formula is valid: | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | is | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384034.png" /></td> </tr></table> | |
− | |||
− | |||
− | + | where the right-hand side is the [[Intersection index (in homology)|intersection index (in homology)]] of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384037.png" />. | |
− | the [[ | ||
− | |||
− | |||
− | |||
− | |||
− | and | ||
− | |||
− | |||
− | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384038.png" /> be a basis for the free part of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384039.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384040.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384041.png" /> with integer entries is called the Seifert matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384042.png" />. The Seifert matrix of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384043.png" />-dimensional knot has the following property: The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384044.png" /> is unimodular (cf. [[Unimodular matrix|Unimodular matrix]]), and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384045.png" /> the [[Signature|signature]] of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384046.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384047.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384048.png" /> is the transpose of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384049.png" />). Any square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384050.png" /> with integer entries is the Seifert matrix of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384051.png" />-dimensional knot if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384052.png" />, and the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384053.png" /> is unimodular. | |
− | |||
− | |||
− | + | The Seifert matrix itself is not an invariant of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384054.png" />; the reason is that the construction of the Seifert manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384055.png" /> and the choice of the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384056.png" /> are not unique. Matrices of the form | |
− | and | ||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384057.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384058.png" /> is a row-vector and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384059.png" /> a column-vector, are known as elementary expansions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384060.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384061.png" /> itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384063.png" />-equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384065.png" /> is a unimodular matrix). For higher-dimensional knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384066.png" /> and one-dimensional links <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384067.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384068.png" />-equivalence class of the Seifert matrix is an invariant of the type of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384069.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384070.png" /> is a knot, the Seifert matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384071.png" /> uniquely determines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384072.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384073.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384074.png" /> is an infinite cyclic covering of the complement of the knot. The polynomial matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384075.png" /> is the Alexander matrix (see [[Alexander invariants|Alexander invariants]]) of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384076.png" />. The Seifert matrix also determines the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384077.png" />-dimensional homology and the linking coefficients in the cyclic coverings of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384078.png" /> that ramify over the link. | |
− | the | ||
− | and the | ||
− | |||
− | + | ====References==== | |
− | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Seifert, "Ueber das Geschlecht von Knoten" ''Math. Ann.'' , '''110''' (1934) pp. 571–592</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Levine, "Polynomial invariants of knots of codimension two" ''Ann. of Math.'' , '''84''' (1966) pp. 537–554</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Levine, "An algebraic classification of some knots of codimension two" ''Comment. Math. Helv.'' , '''45''' (1970) pp. 185–198</TD></TR></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For a description of the Seifert manifold in the case | + | For a description of the Seifert manifold in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384079.png" />, i.e. the Seifert surface of a link, cf. [[Knot and link diagrams|Knot and link diagrams]]. |
− | i.e. the Seifert surface of a link, cf. [[Knot and link diagrams|Knot and link diagrams]]. |
Revision as of 14:53, 7 June 2020
A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. Knot theory). Named after H. Seifert [1], who applied the construction to obtain algebraic invariants of one-dimensional knots in . Let be an -dimensional -component link, i.e. a pair consisting of an oriented sphere and a differentiable or piecewise-linear oriented submanifold of this sphere which is homeomorphic to the disconnected union of copies of the sphere . There exists a compact -dimensional orientable submanifold of such that ; it is known as the Seifert manifold of the link . The orientation of the Seifert manifold is determined by the orientation of its boundary ; since the orientation of is fixed, the normal bundle to in turns out to be oriented, so that one can speak of the field of positive normals to . Let be a small displacement along this field, where is the complement to an open tubular neighbourhood of in . If is odd, one defines a pairing
associating with an element the linking coefficient of the classes and . This is known as the Seifert pairing of the link . If and are of finite order, then . The following formula is valid:
where the right-hand side is the intersection index (in homology) of the classes and on .
Let be a basis for the free part of the group . The -matrix with integer entries is called the Seifert matrix of . The Seifert matrix of any -dimensional knot has the following property: The matrix is unimodular (cf. Unimodular matrix), and for the signature of the matrix is divisible by ( is the transpose of ). Any square matrix with integer entries is the Seifert matrix of some -dimensional knot if , and the matrix is unimodular.
The Seifert matrix itself is not an invariant of the link ; the reason is that the construction of the Seifert manifold and the choice of the basis are not unique. Matrices of the form
where is a row-vector and a column-vector, are known as elementary expansions of , while itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be -equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations , where is a unimodular matrix). For higher-dimensional knots and one-dimensional links the -equivalence class of the Seifert matrix is an invariant of the type of the link . In case is a knot, the Seifert matrix uniquely determines a -module , where is an infinite cyclic covering of the complement of the knot. The polynomial matrix is the Alexander matrix (see Alexander invariants) of the module . The Seifert matrix also determines the -dimensional homology and the linking coefficients in the cyclic coverings of the sphere that ramify over the link.
References
[1] | H. Seifert, "Ueber das Geschlecht von Knoten" Math. Ann. , 110 (1934) pp. 571–592 |
[2] | R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963) |
[3] | J. Levine, "Polynomial invariants of knots of codimension two" Ann. of Math. , 84 (1966) pp. 537–554 |
[4] | J. Levine, "An algebraic classification of some knots of codimension two" Comment. Math. Helv. , 45 (1970) pp. 185–198 |
Comments
For a description of the Seifert manifold in the case , i.e. the Seifert surface of a link, cf. Knot and link diagrams.
Seifert matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Seifert_matrix&oldid=49419