Namespaces
Variants
Actions

Difference between revisions of "Seifert matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (Undo revision 48646 by Ulf Rehmann (talk))
Tag: Undo
Line 1: Line 1:
<!--
+
A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. [[Knot theory|Knot theory]]). Named after H. Seifert [[#References|[1]]], who applied the construction to obtain algebraic invariants of one-dimensional knots in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838401.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838402.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838403.png" />-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838404.png" />-component [[Link|link]], i.e. a pair consisting of an oriented sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838405.png" /> and a differentiable or piecewise-linear oriented submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838406.png" /> of this sphere which is homeomorphic to the disconnected union of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838407.png" /> copies of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838408.png" />. There exists a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838409.png" />-dimensional orientable submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384011.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384012.png" />; it is known as the Seifert manifold of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384013.png" />. The orientation of the Seifert manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384014.png" /> is determined by the orientation of its boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384015.png" />; since the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384016.png" /> is fixed, the normal bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384018.png" /> turns out to be oriented, so that one can speak of the field of positive normals to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384019.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384020.png" /> be a small displacement along this field, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384021.png" /> is the complement to an open tubular neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384024.png" /> is odd, one defines a pairing
s0838401.png
 
$#A+1 = 78 n = 0
 
$#C+1 = 78 : ~/encyclopedia/old_files/data/S083/S.0803840 Seifert matrix
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
{{TEX|auto}}
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384025.png" /></td> </tr></table>
{{TEX|done}}
 
  
A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. [[Knot theory|Knot theory]]). Named after H. Seifert [[#References|[1]]], who applied the construction to obtain algebraic invariants of one-dimensional knots in  $  S  ^ {3} $.  
+
associating with an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384026.png" /> the [[Linking coefficient|linking coefficient]] of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384028.png" />. This <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384029.png" /> is known as the Seifert pairing of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384032.png" /> are of finite order, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384033.png" />. The following formula is valid:
Let  $  L = ( S  ^ {n+} 2 , l  ^ {n} ) $
 
be an  $  n $-
 
dimensional  $  m $-
 
component [[Link|link]], i.e. a pair consisting of an oriented sphere  $  S  ^ {n+} 2 $
 
and a differentiable or piecewise-linear oriented submanifold  $  l  ^ {n} $
 
of this sphere which is homeomorphic to the disconnected union of  $  m $
 
copies of the sphere  $  S  ^ {n} $.  
 
There exists a compact  $  ( n+ 1) $-
 
dimensional orientable submanifold  $  V $
 
of  $  S  ^ {n+} 2 $
 
such that  $  \partial  V = l $;
 
it is known as the Seifert manifold of the link $  L $.  
 
The orientation of the Seifert manifold  $  V $
 
is determined by the orientation of its boundary  $  \partial  V = l $;
 
since the orientation of $  S  ^ {n+} 2 $
 
is fixed, the normal bundle to  $  V $
 
in  $  S  ^ {n+} 2 $
 
turns out to be oriented, so that one can speak of the field of positive normals to  $  V $.  
 
Let  $  i _ {+} :  V \rightarrow Y $
 
be a small displacement along this field, where  $  Y $
 
is the complement to an open tubular neighbourhood of  $  V $
 
in  $  S  ^ {n+} 2 $.  
 
If  $  n = 2 q - 1 $
 
is odd, one defines a pairing
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384034.png" /></td> </tr></table>
\theta : H _ {q} V \otimes H _ {q} V  \rightarrow  \mathbf Z ,
 
$$
 
  
associating with an element  $  z _ {1} \otimes z _ {2} $
+
where the right-hand side is the [[Intersection index (in homology)|intersection index (in homology)]] of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384037.png" />.
the [[Linking coefficient|linking coefficient]] of the classes $  z _ {1} \in H _ {q} V $
 
and  $  i _ {+} * z _ {2} \in H _ {q} Y $.  
 
This  $  \theta $
 
is known as the Seifert pairing of the link  $  L $.  
 
If  $  z _ {1} $
 
and $  z _ {2} $
 
are of finite order, then  $  \theta ( z _ {1} \otimes z _ {2} ) = 0 $.  
 
The following formula is valid:
 
  
$$
+
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384038.png" /> be a basis for the free part of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384039.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384040.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384041.png" /> with integer entries is called the Seifert matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384042.png" />. The Seifert matrix of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384043.png" />-dimensional knot has the following property: The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384044.png" /> is unimodular (cf. [[Unimodular matrix|Unimodular matrix]]), and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384045.png" /> the [[Signature|signature]] of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384046.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384047.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384048.png" /> is the transpose of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384049.png" />). Any square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384050.png" /> with integer entries is the Seifert matrix of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384051.png" />-dimensional knot if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384052.png" />, and the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384053.png" /> is unimodular.
\theta ( z _ {1} \otimes z _ {2} ) + ( - 1 )  ^ {q} \theta ( z _ {2} \otimes z _ {1} )  = z _ {1} \cdot z _ {2} ,
 
$$
 
  
where the right-hand side is the [[Intersection index (in homology)|intersection index (in homology)]] of the classes  $  z _ {1} $
+
The Seifert matrix itself is not an invariant of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384054.png" />; the reason is that the construction of the Seifert manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384055.png" /> and the choice of the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384056.png" /> are not unique. Matrices of the form
and $  z _ {2} $
 
on  $  V $.
 
  
Let  $  e _ {1} \dots e _ {k} $
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384057.png" /></td> </tr></table>
be a basis for the free part of the group  $  H _ {q} V $.
 
The  $  ( k \times k ) $-
 
matrix  $  A = \| \theta ( e _ {i} \otimes e _ {j} ) \| $
 
with integer entries is called the Seifert matrix of  $  L $.
 
The Seifert matrix of any  $  ( 2 q - 1 ) $-
 
dimensional knot has the following property: The matrix  $  A = ( - 1 )  ^ {q} A  ^  \prime  $
 
is unimodular (cf. [[Unimodular matrix|Unimodular matrix]]), and for  $  q = 2 $
 
the [[Signature|signature]] of the matrix  $  A + A  ^  \prime  $
 
is divisible by  $  16 $(
 
$  A  ^  \prime  $
 
is the transpose of  $  A $).  
 
Any square matrix  $  A $
 
with integer entries is the Seifert matrix of some  $  ( 2 q - 1 ) $-
 
dimensional knot if  $  q \neq 2 $,
 
and the matrix  $  A + ( - 1 )  ^ {q} A  ^  \prime  $
 
is unimodular.
 
  
The Seifert matrix itself is not an invariant of the link $  L $;
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384058.png" /> is a row-vector and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384059.png" /> a column-vector, are known as elementary expansions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384060.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384061.png" /> itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384063.png" />-equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384065.png" /> is a unimodular matrix). For higher-dimensional knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384066.png" /> and one-dimensional links <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384067.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384068.png" />-equivalence class of the Seifert matrix is an invariant of the type of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384069.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384070.png" /> is a knot, the Seifert matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384071.png" /> uniquely determines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384072.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384073.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384074.png" /> is an infinite cyclic covering of the complement of the knot. The polynomial matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384075.png" /> is the Alexander matrix (see [[Alexander invariants|Alexander invariants]]) of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384076.png" />. The Seifert matrix also determines the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384077.png" />-dimensional homology and the linking coefficients in the cyclic coverings of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384078.png" /> that ramify over the link.
the reason is that the construction of the Seifert manifold  $  V $
 
and the choice of the basis  $  e _ {1} \dots e _ {k} $
 
are not unique. Matrices of the form
 
  
$$
+
====References====
\left \|
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Seifert,  "Ueber das Geschlecht von Knoten"  ''Math. Ann.'' , '''110'''  (1934)  pp. 571–592</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.H. Crowell,  R.H. Fox,  "Introduction to knot theory" , Ginn  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Levine,  "Polynomial invariants of knots of codimension two"  ''Ann. of Math.'' , '''84'''  (1966)  pp. 537–554</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J. Levine,  "An algebraic classification of some knots of codimension two"  ''Comment. Math. Helv.'' , '''45'''  (1970)  pp. 185–198</TD></TR></table>
  
where  $  \alpha $
 
is a row-vector and  $  \beta $
 
a column-vector, are known as elementary expansions of  $  A $,
 
while  $  A $
 
itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be  $  S $-
 
equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations  $  A \rightarrow P  ^  \prime  A P $,
 
where  $  P $
 
is a unimodular matrix). For higher-dimensional knots  $  ( m = 1 ) $
 
and one-dimensional links  $  ( n = 1 ) $
 
the  $  S $-
 
equivalence class of the Seifert matrix is an invariant of the type of the link  $  L $.
 
In case  $  L $
 
is a knot, the Seifert matrix  $  A $
 
uniquely determines a  $  \mathbf Z [ t , t  ^ {-} 1 ] $-
 
module  $  H _ {q} \widetilde{X}  $,
 
where  $  \widetilde{X}  $
 
is an infinite cyclic covering of the complement of the knot. The polynomial matrix  $  t A + ( - 1 )  ^ {q} A  ^  \prime  $
 
is the Alexander matrix (see [[Alexander invariants|Alexander invariants]]) of the module  $  H _ {q} \widetilde{X}  $.
 
The Seifert matrix also determines the  $  q $-
 
dimensional homology and the linking coefficients in the cyclic coverings of the sphere  $  S  ^ {2q+} 1 $
 
that ramify over the link.
 
  
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Seifert,  "Ueber das Geschlecht von Knoten"  ''Math. Ann.'' , '''110'''  (1934)  pp. 571–592</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.H. Crowell,  R.H. Fox,  "Introduction to knot theory" , Ginn  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Levine,  "Polynomial invariants of knots of codimension two"  ''Ann. of Math.'' , '''84'''  (1966)  pp. 537–554</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J. Levine,  "An algebraic classification of some knots of codimension two"  ''Comment. Math. Helv.'' , '''45'''  (1970)  pp. 185–198</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
For a description of the Seifert manifold in the case $  n = 1 $,  
+
For a description of the Seifert manifold in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384079.png" />, i.e. the Seifert surface of a link, cf. [[Knot and link diagrams|Knot and link diagrams]].
i.e. the Seifert surface of a link, cf. [[Knot and link diagrams|Knot and link diagrams]].
 

Revision as of 14:53, 7 June 2020

A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. Knot theory). Named after H. Seifert [1], who applied the construction to obtain algebraic invariants of one-dimensional knots in . Let be an -dimensional -component link, i.e. a pair consisting of an oriented sphere and a differentiable or piecewise-linear oriented submanifold of this sphere which is homeomorphic to the disconnected union of copies of the sphere . There exists a compact -dimensional orientable submanifold of such that ; it is known as the Seifert manifold of the link . The orientation of the Seifert manifold is determined by the orientation of its boundary ; since the orientation of is fixed, the normal bundle to in turns out to be oriented, so that one can speak of the field of positive normals to . Let be a small displacement along this field, where is the complement to an open tubular neighbourhood of in . If is odd, one defines a pairing

associating with an element the linking coefficient of the classes and . This is known as the Seifert pairing of the link . If and are of finite order, then . The following formula is valid:

where the right-hand side is the intersection index (in homology) of the classes and on .

Let be a basis for the free part of the group . The -matrix with integer entries is called the Seifert matrix of . The Seifert matrix of any -dimensional knot has the following property: The matrix is unimodular (cf. Unimodular matrix), and for the signature of the matrix is divisible by ( is the transpose of ). Any square matrix with integer entries is the Seifert matrix of some -dimensional knot if , and the matrix is unimodular.

The Seifert matrix itself is not an invariant of the link ; the reason is that the construction of the Seifert manifold and the choice of the basis are not unique. Matrices of the form

where is a row-vector and a column-vector, are known as elementary expansions of , while itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be -equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations , where is a unimodular matrix). For higher-dimensional knots and one-dimensional links the -equivalence class of the Seifert matrix is an invariant of the type of the link . In case is a knot, the Seifert matrix uniquely determines a -module , where is an infinite cyclic covering of the complement of the knot. The polynomial matrix is the Alexander matrix (see Alexander invariants) of the module . The Seifert matrix also determines the -dimensional homology and the linking coefficients in the cyclic coverings of the sphere that ramify over the link.

References

[1] H. Seifert, "Ueber das Geschlecht von Knoten" Math. Ann. , 110 (1934) pp. 571–592
[2] R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)
[3] J. Levine, "Polynomial invariants of knots of codimension two" Ann. of Math. , 84 (1966) pp. 537–554
[4] J. Levine, "An algebraic classification of some knots of codimension two" Comment. Math. Helv. , 45 (1970) pp. 185–198


Comments

For a description of the Seifert manifold in the case , i.e. the Seifert surface of a link, cf. Knot and link diagrams.

How to Cite This Entry:
Seifert matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Seifert_matrix&oldid=49419
This article was adapted from an original article by M.Sh. Farber (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article