Difference between revisions of "Zariski theorem"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | z0991301.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/Z099/Z.0909130 Zariski theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''on connectivity, Zariski connectedness theorem'' | ''on connectivity, Zariski connectedness theorem'' | ||
− | Let | + | Let $ f : X \rightarrow Y $ |
+ | be a proper surjective [[Morphism|morphism]] of irreducible varieties, let the field of rational functions $ k ( Y ) $ | ||
+ | be separably algebraically closed in $ k ( X ) $ | ||
+ | and let $ y \in Y $ | ||
+ | be a normal point; then $ f ^ { - 1 } ( y ) $ | ||
+ | is connected (moreover, geometrically connected) (see [[#References|[2]]]). The theorem provides a basis for the classical principle of degeneration: If the generic cycle of an algebraic system of cycles is a variety (i.e. is geometrically irreducible), then any specialization of that cycle is connected. | ||
− | A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties | + | A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties $ f : X \rightarrow Y $ |
+ | is an open imbedding into a neighbourhood of a normal point $ y \in Y $ | ||
+ | if $ f ^ { - 1 } ( y ) $ | ||
+ | is a finite set (see [[#References|[1]]]). In particular, a birational morphism of normal varieties which is bijective at points is an isomorphism. Another formulation of this theorem: Let $ f : X \rightarrow Y $ | ||
+ | be a quasi-finite separable morphism of schemes, and let $ Y $ | ||
+ | be a quasi-compact quasi-separable scheme; then there exists a decomposition $ f = u \circ g $, | ||
+ | where $ u $ | ||
+ | is a finite morphism and $ g $ | ||
+ | an open imbedding . | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, "Foundations of a general theory of birational correspondences" ''Trans. Amer. Math. Soc.'' , '''53''' : 3 (1943) pp. 490–542 {{MR|0008468}} {{ZBL|0061.33004}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" ''Mem. Amer. Math. Soc.'' , '''5''' (1951) pp. 1–90 {{MR|0041487}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" ''Publ. Math. IHES'' , '''11''' (1961) {{MR|0217085}} {{MR|0163910}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" ''Publ. Math. IHES'' , '''32''' (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, "Foundations of a general theory of birational correspondences" ''Trans. Amer. Math. Soc.'' , '''53''' : 3 (1943) pp. 490–542 {{MR|0008468}} {{ZBL|0061.33004}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" ''Mem. Amer. Math. Soc.'' , '''5''' (1951) pp. 1–90 {{MR|0041487}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" ''Publ. Math. IHES'' , '''11''' (1961) {{MR|0217085}} {{MR|0163910}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" ''Publ. Math. IHES'' , '''32''' (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | In case | + | In case $ f: X \rightarrow Y $ |
+ | is a proper birational morphism and $ y \in Y $ | ||
+ | is a non-singular point, $ f ^ { - 1 } ( y) $ | ||
+ | is moreover linearly connected, i.e. any two points of $ f ^ { - 1 } ( y) $ | ||
+ | can be connected by a sequence of rational curves in $ f ^ { - 1 } ( y) $( | ||
+ | see [[#References|[a2]]]–[[#References|[a4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , ''Algebraic geometry and topology (Symp. in honor of S. Lefschetz)'' , Princeton Univ. Press (1957) pp. 182–188 {{MR|0090099}} {{ZBL|0087.35601}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" ''Amer. J. Math.'' , '''80''' (1958) pp. 3–15 {{MR|0093524}} {{ZBL|0087.35602}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W.-L. Chow, "On the connectedness theorem in algebraic geometry" ''Amer. J. Math.'' , '''83''' (1959) pp. 1033–1074 {{MR|0110705}} {{ZBL|0192.26806}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , ''Algebraic geometry and topology (Symp. in honor of S. Lefschetz)'' , Princeton Univ. Press (1957) pp. 182–188 {{MR|0090099}} {{ZBL|0087.35601}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" ''Amer. J. Math.'' , '''80''' (1958) pp. 3–15 {{MR|0093524}} {{ZBL|0087.35602}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W.-L. Chow, "On the connectedness theorem in algebraic geometry" ''Amer. J. Math.'' , '''83''' (1959) pp. 1033–1074 {{MR|0110705}} {{ZBL|0192.26806}} </TD></TR></table> |
Revision as of 08:29, 6 June 2020
on connectivity, Zariski connectedness theorem
Let $ f : X \rightarrow Y $ be a proper surjective morphism of irreducible varieties, let the field of rational functions $ k ( Y ) $ be separably algebraically closed in $ k ( X ) $ and let $ y \in Y $ be a normal point; then $ f ^ { - 1 } ( y ) $ is connected (moreover, geometrically connected) (see [2]). The theorem provides a basis for the classical principle of degeneration: If the generic cycle of an algebraic system of cycles is a variety (i.e. is geometrically irreducible), then any specialization of that cycle is connected.
A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties $ f : X \rightarrow Y $ is an open imbedding into a neighbourhood of a normal point $ y \in Y $ if $ f ^ { - 1 } ( y ) $ is a finite set (see [1]). In particular, a birational morphism of normal varieties which is bijective at points is an isomorphism. Another formulation of this theorem: Let $ f : X \rightarrow Y $ be a quasi-finite separable morphism of schemes, and let $ Y $ be a quasi-compact quasi-separable scheme; then there exists a decomposition $ f = u \circ g $, where $ u $ is a finite morphism and $ g $ an open imbedding .
References
[1] | O. Zariski, "Foundations of a general theory of birational correspondences" Trans. Amer. Math. Soc. , 53 : 3 (1943) pp. 490–542 MR0008468 Zbl 0061.33004 |
[2] | O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" Mem. Amer. Math. Soc. , 5 (1951) pp. 1–90 MR0041487 |
[3a] | A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" Publ. Math. IHES , 11 (1961) MR0217085 MR0163910 |
[3b] | A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" Publ. Math. IHES , 32 (1967) MR0238860 Zbl 0144.19904 Zbl 0135.39701 Zbl 0136.15901 |
Comments
In case $ f: X \rightarrow Y $ is a proper birational morphism and $ y \in Y $ is a non-singular point, $ f ^ { - 1 } ( y) $ is moreover linearly connected, i.e. any two points of $ f ^ { - 1 } ( y) $ can be connected by a sequence of rational curves in $ f ^ { - 1 } ( y) $( see [a2]–[a4]).
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
[a2] | O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , Algebraic geometry and topology (Symp. in honor of S. Lefschetz) , Princeton Univ. Press (1957) pp. 182–188 MR0090099 Zbl 0087.35601 |
[a3] | J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" Amer. J. Math. , 80 (1958) pp. 3–15 MR0093524 Zbl 0087.35602 |
[a4] | W.-L. Chow, "On the connectedness theorem in algebraic geometry" Amer. J. Math. , 83 (1959) pp. 1033–1074 MR0110705 Zbl 0192.26806 |
Zariski theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zariski_theorem&oldid=49245