Namespaces
Variants
Actions

Difference between revisions of "Yamabe problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100101.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100102.png" /> compact [[Riemannian manifold|Riemannian manifold]] of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100103.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100104.png" /> be its [[Scalar curvature|scalar curvature]]. The Yamabe problem is: Does there exist a [[Metric|metric]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100105.png" />, conformal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100106.png" /> (cf. also [[Conformal-differential geometry|Conformal-differential geometry]]), such that the scalar curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100108.png" /> is constant?
+
<!--
 +
y1100101.png
 +
$#A+1 = 147 n = 0
 +
$#C+1 = 147 : ~/encyclopedia/old_files/data/Y110/Y.1100010 Yamabe problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
In 1960, H. Yamabe wanted to solve the [[Poincaré conjecture|Poincaré conjecture]]. As a first step he tried to make constant the scalar curvature by a conformal change of metrics. He thought he had succeeded. Unfortunately, in his beautiful paper [[#References|[a15]]] there is a mistake in an inequality: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y1100109.png" /> must be replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001010.png" />, and this does not yield the result in the general case. Now, thirty years afterwards, the problem is entirely solved.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Yamabe was a pioneer of solving geometrical problems by analysis. If one writes the conformal deformation in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001013.png" />), then the scalar curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001014.png" /> is given by
+
Let  $  ( M _ {n} ,g ) $
 +
be a $  C  ^  \infty  $
 +
compact [[Riemannian manifold|Riemannian manifold]] of dimension  $  n \geq  3 $;
 +
let  $  R $
 +
be its [[Scalar curvature|scalar curvature]]. The Yamabe problem is: Does there exist a [[Metric|metric]]  $  g  ^  \prime  $,
 +
conformal to  $  g $(
 +
cf. also [[Conformal-differential geometry|Conformal-differential geometry]]), such that the scalar curvature $  R  ^  \prime  $
 +
of  $  g  ^  \prime  $
 +
is constant?
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001015.png" /></td> </tr></table>
+
In 1960, H. Yamabe wanted to solve the [[Poincaré conjecture|Poincaré conjecture]]. As a first step he tried to make constant the scalar curvature by a conformal change of metrics. He thought he had succeeded. Unfortunately, in his beautiful paper [[#References|[a15]]] there is a mistake in an inequality: $  \| {v ^ {( q ) } } \| _ {q _ {n}  } \leq  \textrm{ const  } \| {v ^ {( q ) } } \| _ {q _ {1}  } $
 +
must be replaced by  $  \| {v ^ {( q ) } } \| _ {q _ {n}  } \leq  \textrm{ const  } \| {v ^ {( q ) } } \| _ {q _ {1}  } ^ {( q - 1 ) ^ {n - 1 } } $,
 +
and this does not yield the result in the general case. Now, thirty years afterwards, the problem is entirely solved.
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001016.png" />. So, the Yamabe problem is equivalent to solving the equation
+
Yamabe was a pioneer of solving geometrical problems by analysis. If one writes the conformal deformation in the form  $  g  ^  \prime  = \phi ^ { {4 / {( n - 2 ) } } } g $(
 +
where  $  \phi \in C  ^  \infty  $,
 +
$  \phi > 0 $),  
 +
then the scalar curvature  $  R  ^  \prime  $
 +
is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
$$
 +
R  ^  \prime  = \phi ^ {- { {( n + 2 ) } / {( n + 2 ) } } } \left [ R \phi + {
 +
\frac{4 ( n - 1 ) \Delta \phi }{n - 2 }
 +
} \right ]
 +
$$
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001018.png" /> is the conformal Laplacian (cf. also [[Laplace operator|Laplace operator]]). To solve this problem, Yamabe introduced the so-called Yamabe functional, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001019.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001020.png" />.
+
with  $  \Delta \phi = - \nabla  ^ {i} \nabla _ {i} \phi $.  
 +
So, the Yamabe problem is equivalent to solving the equation
  
The [[Euler equation|Euler equation]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001021.png" /> is (a1). Thus, the variational method seems applicable. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001022.png" /> be the infimum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001023.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001024.png" />. One can prove that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001025.png" /> is a conformal invariant, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001026.png" /> is the infimum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001027.png" /> over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001029.png" />. But <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001030.png" /> is the critical exponent in the Sobolev imbedding theorem (cf. [[Imbedding theorems|Imbedding theorems]]), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png" /> is not compact. Hence one cannot prove that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001032.png" /> is attained. To overcome this difficulty, Yamabe considered the functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001034.png" />, and solved the family of approximated equations
+
$$ \tag{a1 }
 +
L \phi = \epsilon \phi ^ { {{( n + 2 ) } / {( n - 2 ) } } } , \phi > 0,  \textrm{ with  }  \epsilon = 1,0, - 1.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
Here,  $  L = \Delta \phi + { {( n - 2 ) R } / {4 ( n - 1 ) } } $
 +
is the conformal Laplacian (cf. also [[Laplace operator|Laplace operator]]). To solve this problem, Yamabe introduced the so-called Yamabe functional,  $  J ( \phi ) = \| \phi \| _ {N} ^ {- 2 } \int _ {V} {\phi L \phi }  {d V } $,
 +
with  $  N = { {2n } / {( n - 2 ) } } $.
  
The following theorem holds, [[#References|[a15]]]: There exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001036.png" /> strictly positive function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001037.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png" /> and satisfying equation (a2), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001039.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001041.png" />.
+
The [[Euler equation|Euler equation]] of  $  J ( \phi ) $
 +
is (a1). Thus, the variational method seems applicable. Let  $  \mu $
 +
be the infimum of  $  J ( \phi ) $
 +
for  $  \phi \in {\mathcal A} = \{ {\psi \in H _ {1} } : {\psi \geq  0, \psi \not\equiv 0 } \} $.  
 +
One can prove that  $  \mu $
 +
is a conformal invariant, and that  $  \mu $
 +
is the infimum of  $  J ( \phi ) $
 +
over all  $  \phi \in H _ {1} $,  
 +
$  \phi \not\equiv 0 $.  
 +
But  $  N $
 +
is the critical exponent in the Sobolev imbedding theorem (cf. [[Imbedding theorems|Imbedding theorems]]), and  $  H _ {1} \subset  L _ {N} $
 +
is not compact. Hence one cannot prove that  $  \mu $
 +
is attained. To overcome this difficulty, Yamabe considered the functionals  $  J _ {q} ( \psi ) = \| \psi \| _ {q} ^ {- 2 } \int _ {V} {\psi L \psi }  {d V } $,  
 +
$  2 < q < N $,
 +
and solved the family of approximated equations
  
According to the sign of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001042.png" />, there are three mutually exclusive cases: positive, negative and zero; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001043.png" /> has the sign of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001044.png" />. Then Yamabe claimed that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001045.png" /> is uniformly bounded. This is not true on the sphere, and this cannot be overcome in the positive case. But in the negative case the wrong term plays no role, and one can remove it (it has negative sign). Yamabe's proof works also in the zero case: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001048.png" /> satisfies (a1) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001049.png" />. In the positive case, if one considers the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001051.png" />. So Yamabe was able to prove that there exists a conformal metric whose scalar curvature is either a non-positive constant or is everywhere positive.
+
$$ \tag{a2 }
 +
L \phi = \mu _ {q} \phi ^ {q - 1 } , \phi > 0, 2 < q < N.
 +
$$
  
The positive case remained open. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001052.png" />, one can exhibit subsequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001053.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001056.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001057.png" /> weakly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001058.png" />. However, there are two difficulties: the regularity and the triviality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001059.png" /> (according to the maximum principle, either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001060.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001061.png" />). The regularity was resolved by N. Trudinger [[#References|[a14]]]. He proved that a weak solution of (a1) is smooth. To prove that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001062.png" /> is non-trivial, the best constants in the Sobolev imbedding theorem must be found. In [[#References|[a1]]] (see also [[#References|[a3]]]), T. Aubin considered three Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001065.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001066.png" /> is continuous but not compact and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001067.png" /> is compact. There are pairs of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001068.png" /> such that all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001069.png" /> satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001070.png" />. It can be proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001071.png" />.
+
The following theorem holds, [[#References|[a15]]]: There exists a $  C  ^  \infty  $
 +
strictly positive function  $  \phi _ {q} $,  
 +
with  $  \| {\phi _ {q} } \| _ {q} = 1 $
 +
and satisfying equation (a2), where  $  \mu _ {q} = J _ {q} ( \phi _ {q} ) = \inf  J _ {q} ( \psi ) $
 +
for all  $  \psi \in H _ {1} $,  
 +
$  \psi \not\equiv 0 $.
  
This situation occurs with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001074.png" />. Moreover, Aubin proved that the best constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001075.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001076.png" />, and not upon the compact manifold. So, [[#References|[a1]]], for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001077.png" /> there exists a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001078.png" /> such that every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001079.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001080.png" />.
+
According to the sign of  $  \mu $,
 +
there are three mutually exclusive cases: positive, negative and zero;  $  \mu _ {q} $
 +
has the sign of  $  \mu $.  
 +
Then Yamabe claimed that the set  $  \{ \phi _ {q} \} $
 +
is uniformly bounded. This is not true on the sphere, and this cannot be overcome in the positive case. But in the negative case the wrong term plays no role, and one can remove it (it has negative sign). Yamabe's proof works also in the zero case: if  $  \mu _ {q} = 0 $,
 +
$  L \phi _ {q} = 0 $
 +
and $  \phi _ {q} $
 +
satisfies (a1) with  $  \epsilon = 0 $.  
 +
In the positive case, if one considers the metric  $  {\widetilde{g}  } = \phi _ {q} ^ { {4 / {( n - 2 ) } } } g $,
 +
then  $  {\widetilde{R}  } = \mu _ {q} \phi _ {q} ^ {q - N } > 0 $.  
 +
So Yamabe was able to prove that there exists a conformal metric whose scalar curvature is either a non-positive constant or is everywhere positive.
  
Recently it has been proved [[#References|[a8]]] that the best constant is achieved (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001081.png" /> exists). Using the above result, Aubin was able to prove the key theorem [[#References|[a2]]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001082.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001083.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001085.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001086.png" />, then there exists a strictly positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001087.png" /> solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001088.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001089.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001090.png" />. For the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001091.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001092.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001093.png" /> is the volume of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001094.png" />.
+
The positive case remained open. When  $  \mu > 0 $,
 +
one can exhibit subsequences  $  \{ \phi _ {q _ {i}  } \} $
 +
with  $  q _ {i} \rightarrow N $
 +
and  $  \psi \in H _ {1} $
 +
such that  $  \psi \geq  0 $
 +
satisfies  $  L \psi = \psi ^ {N - 1 } $
 +
weakly in  $  H _ {1} $.
 +
However, there are two difficulties: the regularity and the triviality of  $  \psi $(
 +
according to the maximum principle, either  $  \psi > 0 $
 +
or  $  \psi \equiv 0 $).
 +
The regularity was resolved by N. Trudinger [[#References|[a14]]]. He proved that a weak solution of (a1) is smooth. To prove that  $  \psi $
 +
is non-trivial, the best constants in the Sobolev imbedding theorem must be found. In [[#References|[a1]]] (see also [[#References|[a3]]]), T. Aubin considered three Banach spaces  $  B _ {1} $,
 +
$  B _ {2} $
 +
and  $  B _ {3} $
 +
such that  $  B _ {1} \subset  B _ {2} $
 +
is continuous but not compact and  $  B _ {1} \subset  B _ {3} $
 +
is compact. There are pairs of real numbers  $  ( C,A ) $
 +
such that all  $  x \in B _ {1} $
 +
satisfy  $  \| x \| _ {B _ {2}  } \leq  C \| x \| _ {B _ {1}  } + A \| x \| _ {B _ {3}  } $.  
 +
It can be proved that  $  K = \inf  \{ C : {\exists A } \} > 0 $.
  
It remains to exhibit a test function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001095.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001096.png" />. All subsequent work has centred on the discovery of appropriate test functions.
+
This situation occurs with  $  H _ {1} $,
 +
$  L _ {N} $
 +
and  $  L _ {2} $.  
 +
Moreover, Aubin proved that the best constant  $  K ( n,2 ) $
 +
depends only on  $  n $,
 +
and not upon the compact manifold. So, [[#References|[a1]]], for any  $  \epsilon > 0 $
 +
there exists a constant  $  A ( \epsilon ) $
 +
such that every  $  \phi \in H _ {1} $
 +
satisfies  $  \| \phi \| _ {N} \leq  [ K ( n,2 ) + \epsilon ] \| {\nabla \phi } \| _ {2} + A ( \epsilon ) \| \phi \| _ {2} $.
  
By considering the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001097.png" /> in a suitable conformal metric and using as test functions truncations of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001098.png" /> (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001099.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010100.png" /> a point at which the Weyl tensor is not zero), Aubin was able to prove [[#References|[a2]]] that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010101.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010102.png" />) is a compact non-locally conformally flat Riemannian manifold, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010103.png" />. Hence there exists a conformal metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010104.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010105.png" />.
+
Recently it has been proved [[#References|[a8]]] that the best constant is achieved (i.e.,  $  A ( 0 ) $
 +
exists). Using the above result, Aubin was able to prove the key theorem [[#References|[a2]]]:  $  \mu $
 +
satisfies  $  \mu \leq  \mu _ {S} = { {n ( n - 2 ) \omega _ {n} ^ { {2 / n } } } / 4 } $(
 +
for  $  ( S _ {n} , \textrm{ can  } ) $,
 +
$  \mu = \mu _ {S} $).
 +
If  $  \mu < \mu _ {S} $,
 +
then there exists a strictly positive  $  C  ^  \infty  $
 +
solution  $  \psi $
 +
of  $  L \psi = \mu \psi ^ {N - 1 } $
 +
with  $  \| \psi \| _ {N} = 1 $.
 +
For the metric  $  {\widetilde{g}  } = \psi ^ { {4 / {( n - 2 ) } } } g $
 +
one has  $  {\widetilde{R}  } = \mu $.
 +
Here,  $  \omega _ {n} $
 +
is the volume of  $  S _ {n} ( 1 ) $.
 +
 
 +
It remains to exhibit a test function  $  \psi $
 +
such that  $  J ( \psi ) < \mu _ {S} $.  
 +
All subsequent work has centred on the discovery of appropriate test functions.
 +
 
 +
By considering the functional  $  J $
 +
in a suitable conformal metric and using as test functions truncations of the functions $  ( r  ^ {2} + \epsilon ) ^ {1 - {n / 2 } } $(
 +
here, $  r ( Q ) = d ( P,Q ) $
 +
with $  P $
 +
a point at which the Weyl tensor is not zero), Aubin was able to prove [[#References|[a2]]] that if $  ( M _ {n} ,g ) $(
 +
$  n \geq  6 $)  
 +
is a compact non-locally conformally flat Riemannian manifold, then $  \mu < \mu _ {S} $.  
 +
Hence there exists a conformal metric $  g  ^  \prime  $
 +
with $  R  ^  \prime  = \mu $.
  
 
===The remaining cases.===
 
===The remaining cases.===
In 1984, G. Medrano [[#References|[a6]]] proved that for a large class of locally conformally-flat manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010106.png" />. At the same time, R. Schoen [[#References|[a10]]] reduced the proof of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010107.png" /> to the proof of the positive mass conjecture. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010108.png" /> is locally conformally flat, there is a conformal metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010109.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010110.png" /> is flat in a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010111.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010112.png" />. In the positive case the conformal Laplacian is invertible; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010113.png" /> be its inverse. The expansion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010114.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010115.png" /> is
+
In 1984, G. Medrano [[#References|[a6]]] proved that for a large class of locally conformally-flat manifolds $  \mu < \mu _ {S} $.  
 +
At the same time, R. Schoen [[#References|[a10]]] reduced the proof of $  \mu < \mu _ {S} $
 +
to the proof of the positive mass conjecture. If $  ( M _ {n} ,g ) $
 +
is locally conformally flat, there is a conformal metric $  {\widetilde{g}  } $
 +
such that $  {\widetilde{g}  } $
 +
is flat in a neighbourhood $  \theta $
 +
of $  P $.  
 +
In the positive case the conformal Laplacian is invertible; let $  G $
 +
be its inverse. The expansion of $  G ( x ) $
 +
in $  \theta $
 +
is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010116.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
$$ \tag{a3 }
 +
G ( x ) = {
 +
\frac{r ^ {2 - n } + \alpha ( x ) }{n - 2 }
 +
} \omega _ {n - 1 }  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010117.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010118.png" /> is a [[Harmonic function|harmonic function]].
+
where $  r = d ( P,x ) $
 +
and $  \alpha ( x ) $
 +
is a [[Harmonic function|harmonic function]].
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010119.png" />, in a conformal metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010120.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010121.png" /> has an expansion like (a3); when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010122.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010123.png" /> has the form (a3); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010124.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010125.png" /> or Lipschitzian according to the dimension. In [[#References|[a10]]] it is proved that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010126.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010127.png" />; it uses test functions equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010128.png" /> in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010129.png" /> and equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010130.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010131.png" /> is large. It remained to proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010132.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010133.png" /> is not conformal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010134.png" />. This was done for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010135.png" /> in [[#References|[a12]]]. For locally conformally-flat manifolds the result is in [[#References|[a13]]], and for dimensions smaller than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010136.png" /> in [[#References|[a11]]]. For a unification of the work of Aubin and Schoen, see [[#References|[a9]]].
+
When $  n = 4, 5 $,  
 +
in a conformal metric $  {\widetilde{g}  } $,  
 +
$  G _ { {\widetilde{L}  }  } $
 +
has an expansion like (a3); when $  n = 3 $,  
 +
$  G _ {L} $
 +
has the form (a3); $  \alpha ( x ) $
 +
is $  C  ^ {1} $
 +
or Lipschitzian according to the dimension. In [[#References|[a10]]] it is proved that if $  A = \alpha ( P ) > 0 $,  
 +
then $  \mu < \mu _ {S} $;  
 +
it uses test functions equal to $  ( \epsilon + r  ^ {2} ) ^ {1 - {n / 2 } } $
 +
in a neighbourhood of $  P $
 +
and equal to $  \epsilon _ {0} G ( x ) $
 +
when $  r $
 +
is large. It remained to proved that $  A > 0 $
 +
if $  ( M _ {n} ,g ) $
 +
is not conformal to $  ( S _ {n} , \textrm{ can  } ) $.  
 +
This was done for $  n = 3 $
 +
in [[#References|[a12]]]. For locally conformally-flat manifolds the result is in [[#References|[a13]]], and for dimensions smaller than $  7 $
 +
in [[#References|[a11]]]. For a unification of the work of Aubin and Schoen, see [[#References|[a9]]].
  
There are also direct proofs, not considering the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010137.png" />; one proceeds by successive approximation, the other by the blow-up method. These proofs use the value of the best constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010138.png" />. In [[#References|[a4]]], A. Bahri presents an algebraic-topological proof for locally conformally-flat manifolds, not using the positive mass conjecture. Here it can not be shown that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010139.png" /> is achieved.
+
There are also direct proofs, not considering the functions $  \phi _ {q} $;  
 +
one proceeds by successive approximation, the other by the blow-up method. These proofs use the value of the best constant $  K _ {n,2 }  $.  
 +
In [[#References|[a4]]], A. Bahri presents an algebraic-topological proof for locally conformally-flat manifolds, not using the positive mass conjecture. Here it can not be shown that $  \mu $
 +
is achieved.
  
 
In [[#References|[a7]]], both the Yamabe problem and the Lichnerowicz problem are solved.
 
In [[#References|[a7]]], both the Yamabe problem and the Lichnerowicz problem are solved.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010140.png" /> be a compact Riemannian manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010141.png" /> which is not conformal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010142.png" />. There exists a conformal metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010143.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010144.png" /> for which any conformal transformation is an [[Isometric mapping|isometric mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010145.png" />.
+
Let $  ( M _ {n} ,g ) $
 +
be a compact Riemannian manifold of dimension $  n \geq  3 $
 +
which is not conformal to $  ( S _ {n} , \textrm{ can  } ) $.  
 +
There exists a conformal metric $  {\widetilde{g}  } $
 +
with $  {\widetilde{R}  } = \textrm{ const  } $
 +
for which any conformal transformation is an [[Isometric mapping|isometric mapping]] $  ( I, ( M, {\widetilde{g}  } ) = C ( M,g ) ) $.
  
A generalization of the Yamabe problem is the prescribed scalar curvature problem in a given conformal class. This problem on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010146.png" /> is known as the Nirenberg problem. Although research is intensive, these problems have not yet (1996) been entirely solved. On compact manifolds with boundary, P. Cherrier presented an original problem in [[#References|[a5]]]: To find a conformal metric with prescribed scalar curvature and prescribed mean curvature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y110010147.png" />.
+
A generalization of the Yamabe problem is the prescribed scalar curvature problem in a given conformal class. This problem on $  S _ {n} $
 +
is known as the Nirenberg problem. Although research is intensive, these problems have not yet (1996) been entirely solved. On compact manifolds with boundary, P. Cherrier presented an original problem in [[#References|[a5]]]: To find a conformal metric with prescribed scalar curvature and prescribed mean curvature of $  \partial  M $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Aubin,  "Espaces de Sobolev sur les variétés Riemanniennes"  ''Bull. Sci. Math.'' , '''100'''  (1976)  pp. 149–173</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Aubin,  "Équations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire"  ''J. Math. Pures Appl.'' , '''55'''  (1976)  pp. 269–296</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  T. Aubin,  "Nonlinear analysis on manifolds. Monge–Ampère equations" , Springer  (1982)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Bahri,  "Proof of the Yamabe conjecture, without the positive mass theorem, for locally conformally flat manifolds"  T. Mabuchi (ed.)  S. Mukai (ed.) , ''Einstein Metrics and Yang–Mills Connections'' , M. Dekker  (1993)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  P. Cherrier,  "Problèmes de Neumann non-linéaires sur les variétés Riemanniennes"  ''J. Funct. Anal.'' , '''57'''  (1984)  pp. 154–206</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  O.G. Medrano,  "On the Yamabe problem concerning the compact locally conformally flat manifolds"  ''J. Funct. Anal.'' , '''66'''  (1986)  pp. 42–53</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  E. Hebey,  M Vaugon,  "Le problème de Yamabe équivariant"  ''Bull. Sci. Math.'' , '''117'''  (1993)  pp. 241–286</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  E. Hebey,  M. Vaugon,  "The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds"  ''Duke Math. J.'' , '''79'''  (1995)  pp. 235–279</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  J.M. Lee,  T.H. Parker,  "The Yamabe problem"  ''Bull. Amer. Math. Soc.'' , '''17'''  (1987)  pp. 37–91</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  R. Schoen,  "Conformal deformation of a Riemannian metric to constant scalar curvature"  ''J. Diff. Geom.'' , '''20'''  (1984)  pp. 479–495</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R. Schoen,  "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics" , ''Topics in Calculus of Variations'' , ''Lecture Notes in Mathematics'' , '''1365''' , Springer  (1989)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  R. Schoen,  S.T. Yau,  "On the proof of the positive mass conjecture in general relativity"  ''Comm. Math. Phys.'' , '''65'''  (1979)  pp. 45–76</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  R. Schoen,  S.T. Yau,  "Conformally flat manifolds, Kleinian groups and scalar curvature"  ''Invent. Math.'' , '''92'''  (1988)  pp. 47–71</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  N. Trudinger,  "Remarks concerning the conformal deformation of Riemannian structures on compact manifolds"  ''Ann. Scuola Norm. Sup. Pisa'' , '''22'''  (1968)  pp. 265–274</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  H. Yamabe,  "On a deformation of Riemannian strctures on compact manifolds"  ''Osaka Math. J.'' , '''12'''  (1960)  pp. 21–37</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Aubin,  "Espaces de Sobolev sur les variétés Riemanniennes"  ''Bull. Sci. Math.'' , '''100'''  (1976)  pp. 149–173</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Aubin,  "Équations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire"  ''J. Math. Pures Appl.'' , '''55'''  (1976)  pp. 269–296</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  T. Aubin,  "Nonlinear analysis on manifolds. Monge–Ampère equations" , Springer  (1982)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Bahri,  "Proof of the Yamabe conjecture, without the positive mass theorem, for locally conformally flat manifolds"  T. Mabuchi (ed.)  S. Mukai (ed.) , ''Einstein Metrics and Yang–Mills Connections'' , M. Dekker  (1993)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  P. Cherrier,  "Problèmes de Neumann non-linéaires sur les variétés Riemanniennes"  ''J. Funct. Anal.'' , '''57'''  (1984)  pp. 154–206</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  O.G. Medrano,  "On the Yamabe problem concerning the compact locally conformally flat manifolds"  ''J. Funct. Anal.'' , '''66'''  (1986)  pp. 42–53</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  E. Hebey,  M Vaugon,  "Le problème de Yamabe équivariant"  ''Bull. Sci. Math.'' , '''117'''  (1993)  pp. 241–286</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  E. Hebey,  M. Vaugon,  "The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds"  ''Duke Math. J.'' , '''79'''  (1995)  pp. 235–279</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  J.M. Lee,  T.H. Parker,  "The Yamabe problem"  ''Bull. Amer. Math. Soc.'' , '''17'''  (1987)  pp. 37–91</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  R. Schoen,  "Conformal deformation of a Riemannian metric to constant scalar curvature"  ''J. Diff. Geom.'' , '''20'''  (1984)  pp. 479–495</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R. Schoen,  "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics" , ''Topics in Calculus of Variations'' , ''Lecture Notes in Mathematics'' , '''1365''' , Springer  (1989)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  R. Schoen,  S.T. Yau,  "On the proof of the positive mass conjecture in general relativity"  ''Comm. Math. Phys.'' , '''65'''  (1979)  pp. 45–76</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  R. Schoen,  S.T. Yau,  "Conformally flat manifolds, Kleinian groups and scalar curvature"  ''Invent. Math.'' , '''92'''  (1988)  pp. 47–71</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  N. Trudinger,  "Remarks concerning the conformal deformation of Riemannian structures on compact manifolds"  ''Ann. Scuola Norm. Sup. Pisa'' , '''22'''  (1968)  pp. 265–274</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  H. Yamabe,  "On a deformation of Riemannian strctures on compact manifolds"  ''Osaka Math. J.'' , '''12'''  (1960)  pp. 21–37</TD></TR></table>

Latest revision as of 08:29, 6 June 2020


Let $ ( M _ {n} ,g ) $ be a $ C ^ \infty $ compact Riemannian manifold of dimension $ n \geq 3 $; let $ R $ be its scalar curvature. The Yamabe problem is: Does there exist a metric $ g ^ \prime $, conformal to $ g $( cf. also Conformal-differential geometry), such that the scalar curvature $ R ^ \prime $ of $ g ^ \prime $ is constant?

In 1960, H. Yamabe wanted to solve the Poincaré conjecture. As a first step he tried to make constant the scalar curvature by a conformal change of metrics. He thought he had succeeded. Unfortunately, in his beautiful paper [a15] there is a mistake in an inequality: $ \| {v ^ {( q ) } } \| _ {q _ {n} } \leq \textrm{ const } \| {v ^ {( q ) } } \| _ {q _ {1} } $ must be replaced by $ \| {v ^ {( q ) } } \| _ {q _ {n} } \leq \textrm{ const } \| {v ^ {( q ) } } \| _ {q _ {1} } ^ {( q - 1 ) ^ {n - 1 } } $, and this does not yield the result in the general case. Now, thirty years afterwards, the problem is entirely solved.

Yamabe was a pioneer of solving geometrical problems by analysis. If one writes the conformal deformation in the form $ g ^ \prime = \phi ^ { {4 / {( n - 2 ) } } } g $( where $ \phi \in C ^ \infty $, $ \phi > 0 $), then the scalar curvature $ R ^ \prime $ is given by

$$ R ^ \prime = \phi ^ {- { {( n + 2 ) } / {( n + 2 ) } } } \left [ R \phi + { \frac{4 ( n - 1 ) \Delta \phi }{n - 2 } } \right ] $$

with $ \Delta \phi = - \nabla ^ {i} \nabla _ {i} \phi $. So, the Yamabe problem is equivalent to solving the equation

$$ \tag{a1 } L \phi = \epsilon \phi ^ { {{( n + 2 ) } / {( n - 2 ) } } } , \phi > 0, \textrm{ with } \epsilon = 1,0, - 1. $$

Here, $ L = \Delta \phi + { {( n - 2 ) R } / {4 ( n - 1 ) } } $ is the conformal Laplacian (cf. also Laplace operator). To solve this problem, Yamabe introduced the so-called Yamabe functional, $ J ( \phi ) = \| \phi \| _ {N} ^ {- 2 } \int _ {V} {\phi L \phi } {d V } $, with $ N = { {2n } / {( n - 2 ) } } $.

The Euler equation of $ J ( \phi ) $ is (a1). Thus, the variational method seems applicable. Let $ \mu $ be the infimum of $ J ( \phi ) $ for $ \phi \in {\mathcal A} = \{ {\psi \in H _ {1} } : {\psi \geq 0, \psi \not\equiv 0 } \} $. One can prove that $ \mu $ is a conformal invariant, and that $ \mu $ is the infimum of $ J ( \phi ) $ over all $ \phi \in H _ {1} $, $ \phi \not\equiv 0 $. But $ N $ is the critical exponent in the Sobolev imbedding theorem (cf. Imbedding theorems), and $ H _ {1} \subset L _ {N} $ is not compact. Hence one cannot prove that $ \mu $ is attained. To overcome this difficulty, Yamabe considered the functionals $ J _ {q} ( \psi ) = \| \psi \| _ {q} ^ {- 2 } \int _ {V} {\psi L \psi } {d V } $, $ 2 < q < N $, and solved the family of approximated equations

$$ \tag{a2 } L \phi = \mu _ {q} \phi ^ {q - 1 } , \phi > 0, 2 < q < N. $$

The following theorem holds, [a15]: There exists a $ C ^ \infty $ strictly positive function $ \phi _ {q} $, with $ \| {\phi _ {q} } \| _ {q} = 1 $ and satisfying equation (a2), where $ \mu _ {q} = J _ {q} ( \phi _ {q} ) = \inf J _ {q} ( \psi ) $ for all $ \psi \in H _ {1} $, $ \psi \not\equiv 0 $.

According to the sign of $ \mu $, there are three mutually exclusive cases: positive, negative and zero; $ \mu _ {q} $ has the sign of $ \mu $. Then Yamabe claimed that the set $ \{ \phi _ {q} \} $ is uniformly bounded. This is not true on the sphere, and this cannot be overcome in the positive case. But in the negative case the wrong term plays no role, and one can remove it (it has negative sign). Yamabe's proof works also in the zero case: if $ \mu _ {q} = 0 $, $ L \phi _ {q} = 0 $ and $ \phi _ {q} $ satisfies (a1) with $ \epsilon = 0 $. In the positive case, if one considers the metric $ {\widetilde{g} } = \phi _ {q} ^ { {4 / {( n - 2 ) } } } g $, then $ {\widetilde{R} } = \mu _ {q} \phi _ {q} ^ {q - N } > 0 $. So Yamabe was able to prove that there exists a conformal metric whose scalar curvature is either a non-positive constant or is everywhere positive.

The positive case remained open. When $ \mu > 0 $, one can exhibit subsequences $ \{ \phi _ {q _ {i} } \} $ with $ q _ {i} \rightarrow N $ and $ \psi \in H _ {1} $ such that $ \psi \geq 0 $ satisfies $ L \psi = \psi ^ {N - 1 } $ weakly in $ H _ {1} $. However, there are two difficulties: the regularity and the triviality of $ \psi $( according to the maximum principle, either $ \psi > 0 $ or $ \psi \equiv 0 $). The regularity was resolved by N. Trudinger [a14]. He proved that a weak solution of (a1) is smooth. To prove that $ \psi $ is non-trivial, the best constants in the Sobolev imbedding theorem must be found. In [a1] (see also [a3]), T. Aubin considered three Banach spaces $ B _ {1} $, $ B _ {2} $ and $ B _ {3} $ such that $ B _ {1} \subset B _ {2} $ is continuous but not compact and $ B _ {1} \subset B _ {3} $ is compact. There are pairs of real numbers $ ( C,A ) $ such that all $ x \in B _ {1} $ satisfy $ \| x \| _ {B _ {2} } \leq C \| x \| _ {B _ {1} } + A \| x \| _ {B _ {3} } $. It can be proved that $ K = \inf \{ C : {\exists A } \} > 0 $.

This situation occurs with $ H _ {1} $, $ L _ {N} $ and $ L _ {2} $. Moreover, Aubin proved that the best constant $ K ( n,2 ) $ depends only on $ n $, and not upon the compact manifold. So, [a1], for any $ \epsilon > 0 $ there exists a constant $ A ( \epsilon ) $ such that every $ \phi \in H _ {1} $ satisfies $ \| \phi \| _ {N} \leq [ K ( n,2 ) + \epsilon ] \| {\nabla \phi } \| _ {2} + A ( \epsilon ) \| \phi \| _ {2} $.

Recently it has been proved [a8] that the best constant is achieved (i.e., $ A ( 0 ) $ exists). Using the above result, Aubin was able to prove the key theorem [a2]: $ \mu $ satisfies $ \mu \leq \mu _ {S} = { {n ( n - 2 ) \omega _ {n} ^ { {2 / n } } } / 4 } $( for $ ( S _ {n} , \textrm{ can } ) $, $ \mu = \mu _ {S} $). If $ \mu < \mu _ {S} $, then there exists a strictly positive $ C ^ \infty $ solution $ \psi $ of $ L \psi = \mu \psi ^ {N - 1 } $ with $ \| \psi \| _ {N} = 1 $. For the metric $ {\widetilde{g} } = \psi ^ { {4 / {( n - 2 ) } } } g $ one has $ {\widetilde{R} } = \mu $. Here, $ \omega _ {n} $ is the volume of $ S _ {n} ( 1 ) $.

It remains to exhibit a test function $ \psi $ such that $ J ( \psi ) < \mu _ {S} $. All subsequent work has centred on the discovery of appropriate test functions.

By considering the functional $ J $ in a suitable conformal metric and using as test functions truncations of the functions $ ( r ^ {2} + \epsilon ) ^ {1 - {n / 2 } } $( here, $ r ( Q ) = d ( P,Q ) $ with $ P $ a point at which the Weyl tensor is not zero), Aubin was able to prove [a2] that if $ ( M _ {n} ,g ) $( $ n \geq 6 $) is a compact non-locally conformally flat Riemannian manifold, then $ \mu < \mu _ {S} $. Hence there exists a conformal metric $ g ^ \prime $ with $ R ^ \prime = \mu $.

The remaining cases.

In 1984, G. Medrano [a6] proved that for a large class of locally conformally-flat manifolds $ \mu < \mu _ {S} $. At the same time, R. Schoen [a10] reduced the proof of $ \mu < \mu _ {S} $ to the proof of the positive mass conjecture. If $ ( M _ {n} ,g ) $ is locally conformally flat, there is a conformal metric $ {\widetilde{g} } $ such that $ {\widetilde{g} } $ is flat in a neighbourhood $ \theta $ of $ P $. In the positive case the conformal Laplacian is invertible; let $ G $ be its inverse. The expansion of $ G ( x ) $ in $ \theta $ is

$$ \tag{a3 } G ( x ) = { \frac{r ^ {2 - n } + \alpha ( x ) }{n - 2 } } \omega _ {n - 1 } , $$

where $ r = d ( P,x ) $ and $ \alpha ( x ) $ is a harmonic function.

When $ n = 4, 5 $, in a conformal metric $ {\widetilde{g} } $, $ G _ { {\widetilde{L} } } $ has an expansion like (a3); when $ n = 3 $, $ G _ {L} $ has the form (a3); $ \alpha ( x ) $ is $ C ^ {1} $ or Lipschitzian according to the dimension. In [a10] it is proved that if $ A = \alpha ( P ) > 0 $, then $ \mu < \mu _ {S} $; it uses test functions equal to $ ( \epsilon + r ^ {2} ) ^ {1 - {n / 2 } } $ in a neighbourhood of $ P $ and equal to $ \epsilon _ {0} G ( x ) $ when $ r $ is large. It remained to proved that $ A > 0 $ if $ ( M _ {n} ,g ) $ is not conformal to $ ( S _ {n} , \textrm{ can } ) $. This was done for $ n = 3 $ in [a12]. For locally conformally-flat manifolds the result is in [a13], and for dimensions smaller than $ 7 $ in [a11]. For a unification of the work of Aubin and Schoen, see [a9].

There are also direct proofs, not considering the functions $ \phi _ {q} $; one proceeds by successive approximation, the other by the blow-up method. These proofs use the value of the best constant $ K _ {n,2 } $. In [a4], A. Bahri presents an algebraic-topological proof for locally conformally-flat manifolds, not using the positive mass conjecture. Here it can not be shown that $ \mu $ is achieved.

In [a7], both the Yamabe problem and the Lichnerowicz problem are solved.

Let $ ( M _ {n} ,g ) $ be a compact Riemannian manifold of dimension $ n \geq 3 $ which is not conformal to $ ( S _ {n} , \textrm{ can } ) $. There exists a conformal metric $ {\widetilde{g} } $ with $ {\widetilde{R} } = \textrm{ const } $ for which any conformal transformation is an isometric mapping $ ( I, ( M, {\widetilde{g} } ) = C ( M,g ) ) $.

A generalization of the Yamabe problem is the prescribed scalar curvature problem in a given conformal class. This problem on $ S _ {n} $ is known as the Nirenberg problem. Although research is intensive, these problems have not yet (1996) been entirely solved. On compact manifolds with boundary, P. Cherrier presented an original problem in [a5]: To find a conformal metric with prescribed scalar curvature and prescribed mean curvature of $ \partial M $.

References

[a1] T. Aubin, "Espaces de Sobolev sur les variétés Riemanniennes" Bull. Sci. Math. , 100 (1976) pp. 149–173
[a2] T. Aubin, "Équations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire" J. Math. Pures Appl. , 55 (1976) pp. 269–296
[a3] T. Aubin, "Nonlinear analysis on manifolds. Monge–Ampère equations" , Springer (1982)
[a4] A. Bahri, "Proof of the Yamabe conjecture, without the positive mass theorem, for locally conformally flat manifolds" T. Mabuchi (ed.) S. Mukai (ed.) , Einstein Metrics and Yang–Mills Connections , M. Dekker (1993)
[a5] P. Cherrier, "Problèmes de Neumann non-linéaires sur les variétés Riemanniennes" J. Funct. Anal. , 57 (1984) pp. 154–206
[a6] O.G. Medrano, "On the Yamabe problem concerning the compact locally conformally flat manifolds" J. Funct. Anal. , 66 (1986) pp. 42–53
[a7] E. Hebey, M Vaugon, "Le problème de Yamabe équivariant" Bull. Sci. Math. , 117 (1993) pp. 241–286
[a8] E. Hebey, M. Vaugon, "The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds" Duke Math. J. , 79 (1995) pp. 235–279
[a9] J.M. Lee, T.H. Parker, "The Yamabe problem" Bull. Amer. Math. Soc. , 17 (1987) pp. 37–91
[a10] R. Schoen, "Conformal deformation of a Riemannian metric to constant scalar curvature" J. Diff. Geom. , 20 (1984) pp. 479–495
[a11] R. Schoen, "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics" , Topics in Calculus of Variations , Lecture Notes in Mathematics , 1365 , Springer (1989)
[a12] R. Schoen, S.T. Yau, "On the proof of the positive mass conjecture in general relativity" Comm. Math. Phys. , 65 (1979) pp. 45–76
[a13] R. Schoen, S.T. Yau, "Conformally flat manifolds, Kleinian groups and scalar curvature" Invent. Math. , 92 (1988) pp. 47–71
[a14] N. Trudinger, "Remarks concerning the conformal deformation of Riemannian structures on compact manifolds" Ann. Scuola Norm. Sup. Pisa , 22 (1968) pp. 265–274
[a15] H. Yamabe, "On a deformation of Riemannian strctures on compact manifolds" Osaka Math. J. , 12 (1960) pp. 21–37
How to Cite This Entry:
Yamabe problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Yamabe_problem&oldid=49239
This article was adapted from an original article by T. Aubin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article