|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981701.png" /> be a closed imbedded smooth curve in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981702.png" />. For each ordered pair of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981703.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981704.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981705.png" /> be the unit-length vector pointing from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981706.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981707.png" />. This gives a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981708.png" />. The writhing number of the space curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w0981709.png" /> is
| + | <!-- |
| + | w0981701.png |
| + | $#A+1 = 54 n = 0 |
| + | $#C+1 = 54 : ~/encyclopedia/old_files/data/W098/W.0908170 Writhing number |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817010.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817011.png" /> is the pull-back along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817012.png" /> of the standard area element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817013.png" /> on the unit sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817014.png" />. In terms of local curve parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817016.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817018.png" /> it can be described as
| + | Let $ C $ |
| + | be a closed imbedded smooth curve in $ \mathbf R ^ {3} $. |
| + | For each ordered pair of points $ x, y $ |
| + | on $ C $, |
| + | let $ e ( x, y) = ( y- x) / \| y- x \| $ |
| + | be the unit-length vector pointing from $ x $ |
| + | to $ y $. |
| + | This gives a mapping $ e: C \times C \rightarrow S ^ {2} $. |
| + | The writhing number of the space curve $ C $ |
| + | is |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817019.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm Wr} ( C) = |
| + | \frac{1}{4 \pi } |
| + | \int\limits _ {C \times C } e ^ {*} d \Sigma , |
| + | $$ |
| | | |
− | Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817020.png" /> be a ribbon based on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817021.png" />. Such a ribbon is obtained by taking a smooth vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817022.png" /> of unit-length vectors on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817024.png" /> is always perpendicular to the tangent vector along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817025.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817026.png" />. The unit length is chosen small enough such that each unit-length line segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817027.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817028.png" /> only intersects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817029.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817030.png" />. The ribbon <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817031.png" /> is the union of all the closed unit-length line segments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817033.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817034.png" /> be the smooth curve of end points of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817035.png" />. The total twist of the ribbon <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817036.png" /> is defined as
| + | where $ e ^ {*} d \Sigma $ |
| + | is the pull-back along $ e $ |
| + | of the standard area element $ d \Sigma $ |
| + | on the unit sphere $ S ^ {2} $. |
| + | In terms of local curve parameters $ s _ {1} $ |
| + | and $ s _ {2} $ |
| + | at $ x $ |
| + | and $ y $ |
| + | it can be described as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817037.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm Wr} ( C) = |
| + | \frac{1}{4 \pi } |
| + | \int\limits \int\limits \left ( |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817038.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817039.png" /> is the unit-length vector such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817042.png" />, the unit-length tangent vector along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817043.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817044.png" />, make up a right-handed orthonormal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817045.png" />-frame. The writhing number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817046.png" />, total twist of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817047.png" /> and the linking number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817048.png" /> (cf. [[Linking coefficient|Linking coefficient]]), given by the Gauss formula
| + | \frac{\partial e }{\partial s _ {1} } |
| + | \times |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817049.png" /></td> </tr></table>
| + | \frac{\partial e }{\partial s _ {2} } |
| + | \cdot e \right ) ds _ {1} ds _ {2} . |
| + | $$ |
| | | |
− | (where now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817050.png" /> runs over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817052.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817053.png" />), are related by White's formula: | + | Now let $ R $ |
| + | be a ribbon based on $ C $. |
| + | Such a ribbon is obtained by taking a smooth vector field $ v $ |
| + | of unit-length vectors on $ C $ |
| + | such that $ v( x) $ |
| + | is always perpendicular to the tangent vector along $ C $ |
| + | at $ x \in C $. |
| + | The unit length is chosen small enough such that each unit-length line segment $ v( x) $ |
| + | at $ x $ |
| + | only intersects $ C $ |
| + | at $ x $. |
| + | The ribbon $ R $ |
| + | is the union of all the closed unit-length line segments $ v( x) $, |
| + | $ x \in C $. |
| + | Let $ C ^ \prime $ |
| + | be the smooth curve of end points of the $ v( x) $. |
| + | The total twist of the ribbon $ R $ |
| + | is defined as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098170/w09817054.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm Tw} ( R) = |
| + | \frac{1}{2 \pi } |
| + | \int\limits _ { C } v ^ \perp \cdot dv , |
| + | $$ |
| + | |
| + | where $ v ^ \perp $ |
| + | at $ x \in C $ |
| + | is the unit-length vector such that $ v $, |
| + | $ v ^ \perp $ |
| + | and $ t $, |
| + | the unit-length tangent vector along $ C $ |
| + | at $ x $, |
| + | make up a right-handed orthonormal $ 3 $- |
| + | frame. The writhing number of $ C $, |
| + | total twist of $ R $ |
| + | and the linking number $ \mathop{\rm Lk} ( C, C ^ \prime ) $( |
| + | cf. [[Linking coefficient|Linking coefficient]]), given by the Gauss formula |
| + | |
| + | $$ |
| + | \mathop{\rm Lk} ( C, C ^ \prime ) = |
| + | \frac{1}{4 \pi } |
| + | \int\limits _ {C \times C ^ \prime } |
| + | e ^ {*} d \Sigma |
| + | $$ |
| + | |
| + | (where now $ x $ |
| + | runs over $ C $ |
| + | and $ y $ |
| + | over $ C ^ \prime $), |
| + | are related by White's formula: |
| + | |
| + | $$ |
| + | \mathop{\rm Lk} ( C , C ^ \prime ) = \mathop{\rm Tw} ( R) + \mathop{\rm Wr} ( C) . |
| + | $$ |
| | | |
| This formula has applications to the coiling and supercoiling of DNA. | | This formula has applications to the coiling and supercoiling of DNA. |
Let $ C $
be a closed imbedded smooth curve in $ \mathbf R ^ {3} $.
For each ordered pair of points $ x, y $
on $ C $,
let $ e ( x, y) = ( y- x) / \| y- x \| $
be the unit-length vector pointing from $ x $
to $ y $.
This gives a mapping $ e: C \times C \rightarrow S ^ {2} $.
The writhing number of the space curve $ C $
is
$$
\mathop{\rm Wr} ( C) =
\frac{1}{4 \pi }
\int\limits _ {C \times C } e ^ {*} d \Sigma ,
$$
where $ e ^ {*} d \Sigma $
is the pull-back along $ e $
of the standard area element $ d \Sigma $
on the unit sphere $ S ^ {2} $.
In terms of local curve parameters $ s _ {1} $
and $ s _ {2} $
at $ x $
and $ y $
it can be described as
$$
\mathop{\rm Wr} ( C) =
\frac{1}{4 \pi }
\int\limits \int\limits \left (
\frac{\partial e }{\partial s _ {1} }
\times
\frac{\partial e }{\partial s _ {2} }
\cdot e \right ) ds _ {1} ds _ {2} .
$$
Now let $ R $
be a ribbon based on $ C $.
Such a ribbon is obtained by taking a smooth vector field $ v $
of unit-length vectors on $ C $
such that $ v( x) $
is always perpendicular to the tangent vector along $ C $
at $ x \in C $.
The unit length is chosen small enough such that each unit-length line segment $ v( x) $
at $ x $
only intersects $ C $
at $ x $.
The ribbon $ R $
is the union of all the closed unit-length line segments $ v( x) $,
$ x \in C $.
Let $ C ^ \prime $
be the smooth curve of end points of the $ v( x) $.
The total twist of the ribbon $ R $
is defined as
$$
\mathop{\rm Tw} ( R) =
\frac{1}{2 \pi }
\int\limits _ { C } v ^ \perp \cdot dv ,
$$
where $ v ^ \perp $
at $ x \in C $
is the unit-length vector such that $ v $,
$ v ^ \perp $
and $ t $,
the unit-length tangent vector along $ C $
at $ x $,
make up a right-handed orthonormal $ 3 $-
frame. The writhing number of $ C $,
total twist of $ R $
and the linking number $ \mathop{\rm Lk} ( C, C ^ \prime ) $(
cf. Linking coefficient), given by the Gauss formula
$$
\mathop{\rm Lk} ( C, C ^ \prime ) =
\frac{1}{4 \pi }
\int\limits _ {C \times C ^ \prime }
e ^ {*} d \Sigma
$$
(where now $ x $
runs over $ C $
and $ y $
over $ C ^ \prime $),
are related by White's formula:
$$
\mathop{\rm Lk} ( C , C ^ \prime ) = \mathop{\rm Tw} ( R) + \mathop{\rm Wr} ( C) .
$$
This formula has applications to the coiling and supercoiling of DNA.
References
[a1] | W.F. Pohl, "DNA and differential geometry" Math. Intelligencer , 3 (1980) pp. 20–27 |
[a2] | J.H. White, "Self-linking and the Gauss integral in higher dimensions" Amer. J. Math. , 91 (1969) pp. 693–728 |