Difference between revisions of "Wishart distribution"
Ulf Rehmann (talk | contribs) m |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0980401.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/W098/W.0908040 Wishart distribution | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The joint distribution of the elements from the sample covariance matrix of observations from a multivariate [[Normal distribution|normal distribution]]. Let the results of observations have a $ p $- | |
+ | dimensional normal distribution $ N( \mu , \Sigma ) $ | ||
+ | with vector mean $ \mu $ | ||
+ | and covariance matrix $ \Sigma $. | ||
+ | Then the joint density of the elements of the matrix $ A= \sum _ {i=} 1 ^ {n} ( X _ {i} - \overline{X}\; ) ( X _ {i} - \overline{X}\; ) ^ \prime $ | ||
+ | is given by the formula | ||
− | + | $$ | |
+ | w( n, \Sigma ) = | ||
+ | \frac{| A | ^ {( n- p)/2 } | ||
+ | e ^ {- \mathop{\rm tr} ( A \Sigma ^ {-} 1 )/2 } }{2 ^ {( n- 1) p/2 } \pi ^ {p( p- 1)/4 } | \Sigma | ^ {( n- 1)/2 } | ||
+ | \prod _ { i= } 1 ^ { p } \Gamma \left ( n- | ||
+ | \frac{i}{2} | ||
+ | \right ) } | ||
− | + | $$ | |
+ | |||
+ | ( $ \mathop{\rm tr} M $ | ||
+ | denotes the trace of a matrix $ M $), | ||
+ | if the matrix $ \Sigma $ | ||
+ | is positive definite, and $ w( n, \Sigma )= 0 $ | ||
+ | in other cases. The Wishart distribution with $ n $ | ||
+ | degrees of freedom and with matrix $ \Sigma $ | ||
+ | is defined as the $ p( n+ 1)/2 $- | ||
+ | dimensional distribution $ W( n, \Sigma ) $ | ||
+ | with density $ w( n, \Sigma ) $. | ||
+ | The sample covariance matrix $ S= A/( n- 1) $, | ||
+ | which is an estimator for the matrix $ \Sigma $, | ||
+ | has a Wishart distribution. | ||
+ | |||
+ | The Wishart distribution is a basic distribution in multivariate statistical analysis; it is the $ p $- | ||
+ | dimensional generalization (in the sense above) of the $ 1 $- | ||
+ | dimensional [[Chi-squared distribution| "chi-squared" distribution]]. | ||
+ | |||
+ | If the independent random vectors $ X $ | ||
+ | and $ Y $ | ||
+ | have Wishart distributions $ W( n _ {1} , \Sigma ) $ | ||
+ | and $ W ( n _ {2} , \Sigma ) $, | ||
+ | respectively, then the vector $ X + Y $ | ||
+ | has the Wishart distribution $ W( n _ {1} + n _ {2} , \Sigma ) $. | ||
The Wishart distribution was first used by J. Wishart [[#References|[1]]]. | The Wishart distribution was first used by J. Wishart [[#References|[1]]]. | ||
Line 13: | Line 56: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Wishart, ''Biometrika A'' , '''20''' (1928) pp. 32–52</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Wishart, ''Biometrika A'' , '''20''' (1928) pp. 32–52</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.M. Khirsagar, "Multivariate analysis" , M. Dekker (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.M. Khirsagar, "Multivariate analysis" , M. Dekker (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982)</TD></TR></table> |
Revision as of 08:29, 6 June 2020
The joint distribution of the elements from the sample covariance matrix of observations from a multivariate normal distribution. Let the results of observations have a $ p $-
dimensional normal distribution $ N( \mu , \Sigma ) $
with vector mean $ \mu $
and covariance matrix $ \Sigma $.
Then the joint density of the elements of the matrix $ A= \sum _ {i=} 1 ^ {n} ( X _ {i} - \overline{X}\; ) ( X _ {i} - \overline{X}\; ) ^ \prime $
is given by the formula
$$ w( n, \Sigma ) = \frac{| A | ^ {( n- p)/2 } e ^ {- \mathop{\rm tr} ( A \Sigma ^ {-} 1 )/2 } }{2 ^ {( n- 1) p/2 } \pi ^ {p( p- 1)/4 } | \Sigma | ^ {( n- 1)/2 } \prod _ { i= } 1 ^ { p } \Gamma \left ( n- \frac{i}{2} \right ) } $$
( $ \mathop{\rm tr} M $ denotes the trace of a matrix $ M $), if the matrix $ \Sigma $ is positive definite, and $ w( n, \Sigma )= 0 $ in other cases. The Wishart distribution with $ n $ degrees of freedom and with matrix $ \Sigma $ is defined as the $ p( n+ 1)/2 $- dimensional distribution $ W( n, \Sigma ) $ with density $ w( n, \Sigma ) $. The sample covariance matrix $ S= A/( n- 1) $, which is an estimator for the matrix $ \Sigma $, has a Wishart distribution.
The Wishart distribution is a basic distribution in multivariate statistical analysis; it is the $ p $- dimensional generalization (in the sense above) of the $ 1 $- dimensional "chi-squared" distribution.
If the independent random vectors $ X $ and $ Y $ have Wishart distributions $ W( n _ {1} , \Sigma ) $ and $ W ( n _ {2} , \Sigma ) $, respectively, then the vector $ X + Y $ has the Wishart distribution $ W( n _ {1} + n _ {2} , \Sigma ) $.
The Wishart distribution was first used by J. Wishart [1].
References
[1] | J. Wishart, Biometrika A , 20 (1928) pp. 32–52 |
[2] | T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958) |
Comments
References
[a1] | A.M. Khirsagar, "Multivariate analysis" , M. Dekker (1972) |
[a2] | R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982) |
Wishart distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wishart_distribution&oldid=49230