Difference between revisions of "Wirsing theorems"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w1101101.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/W110/W.1100110 Wirsing theorems | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Multiplicative arithmetic functions $ f : \mathbf N \rightarrow \mathbf C $ | |
+ | are determined by their values at the prime powers (cf. [[Multiplicative arithmetic function|Multiplicative arithmetic function]]). Higher prime powers $ p ^ {k} $, | ||
+ | $ k \geq 2 $, | ||
+ | are rare, and so the behaviour of $ f $ | ||
+ | at the primes should strongly influence the behaviour of $ f $ | ||
+ | in general. This vague idea, which also lies behind the theorems of Delange and Elliott (see [[Delange theorem|Delange theorem]]; [[Elliott–Daboussi theorem|Elliott–Daboussi theorem]]), led E. Wirsing in 1961 [[#References|[a6]]] to the following result, which provides asymptotic formulas for a large class of non-negative multiplicative functions. | ||
− | + | Let $ f $ | |
+ | be a non-negative multiplicative function. Assume that the values of $ f $ | ||
+ | at the primes satisfy, with some positive constant $ \tau $, | ||
− | + | $$ \tag{a1 } | |
+ | \sum _ {p \leq x } f ( p ) \cdot { \mathop{\rm log} } p = ( \tau + o ( 1 ) ) \cdot x \textrm{ as } x \rightarrow \infty, | ||
+ | $$ | ||
− | + | and that the values of $ f $ | |
+ | at higher prime powers are not "too large" : | ||
− | + | $$ | |
+ | f ( p ^ {k} ) \leq \gamma _ {1} \cdot \gamma _ {2} ^ {k} \textrm{ for } k = 2,3 \dots | ||
+ | $$ | ||
− | < | + | where $ 0 \leq \gamma _ {2} < 2 $. |
+ | Then | ||
− | + | $$ \tag{a2 } | |
+ | \sum _ {n \leq x } f ( n ) = ( 1 + o ( 1 ) ) \cdot { | ||
+ | \frac{x}{ { \mathop{\rm log} } x } | ||
+ | } \cdot | ||
+ | $$ | ||
− | + | $$ | |
+ | \cdot | ||
+ | { | ||
+ | \frac{e ^ {- {\mathcal C} \tau } }{\Gamma ( \tau ) } | ||
+ | } \cdot \prod _ {p \leq x } \left ( 1 + { | ||
+ | \frac{f ( p ) }{p} | ||
+ | } + { | ||
+ | \frac{f ( p ^ {2} ) }{p ^ {2} } | ||
+ | } + \dots \right ) . | ||
+ | $$ | ||
+ | |||
+ | The proof uses an inversion of the order of summation in $ \sum _ {n \leq x } f ( n ) \cdot { \mathop{\rm log} } n = \sum _ {n \leq x } f ( n ) \cdot \sum _ { {{p ^ {k} } \mid n } } { \mathop{\rm log} } p ^ {k} $, | ||
+ | to show that | ||
+ | |||
+ | $$ | ||
+ | \sum _ {n \leq x } f ( n ) \sim \tau \cdot { | ||
+ | \frac{x}{ { \mathop{\rm log} } x } | ||
+ | } \cdot \sum _ {n \leq x } { | ||
+ | \frac{1}{n} | ||
+ | } \cdot f ( n ) . | ||
+ | $$ | ||
The last sum may be dealt with by elementary arguments or by a skilful application of the Hardy–Littlewood–Karamata Tauberian theorem (cf. [[Tauberian theorems|Tauberian theorems]]). | The last sum may be dealt with by elementary arguments or by a skilful application of the Hardy–Littlewood–Karamata Tauberian theorem (cf. [[Tauberian theorems|Tauberian theorems]]). | ||
− | In 1967, B.V. Levin and A.S. Fainleib [[#References|[a5]]] also gave asymptotic evaluations of sums | + | In 1967, B.V. Levin and A.S. Fainleib [[#References|[a5]]] also gave asymptotic evaluations of sums $ \sum _ {n \leq x } f ( n ) $ |
+ | for multiplicative functions $ f $, | ||
+ | by reducing the problem to the study of the asymptotic behaviour of solutions of integral equations of the form $ t \cdot z ( t ) = \int _ {0} ^ {t} {K ( t - u ) z ( u ) } {du } $. | ||
− | In [[#References|[a6]]], Wirsing also deduced results for complex-valued multiplicative functions. Unfortunately, these results did not contain the prime number theorem (in the form | + | In [[#References|[a6]]], Wirsing also deduced results for complex-valued multiplicative functions. Unfortunately, these results did not contain the prime number theorem (in the form $ \sum _ {n \leq x } \mu ( n ) = o ( x ) $; |
+ | cf. also [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]), and they did not settle the Erdös–Wintner conjecture: Any multiplicative function assuming only the values $ + 1 $ | ||
+ | and $ - 1 $ | ||
+ | has a mean value (see [[#References|[a1]]]). | ||
− | But six years later, in 1967 [[#References|[a7]]], Wirsing was able to settle this conjecture. He proved in an elementary, but complicated, way several results on multiplicative functions. For example: If | + | But six years later, in 1967 [[#References|[a7]]], Wirsing was able to settle this conjecture. He proved in an elementary, but complicated, way several results on multiplicative functions. For example: If $ f $ |
+ | is a real-valued multiplicative function and if $ | f | \leq 1 $, | ||
+ | then the mean value $ M ( f ) $ | ||
+ | exists [[#References|[a7]]], Satz 1.2.2. | ||
The asymptotic formula (a2) can now be proved under the condition | The asymptotic formula (a2) can now be proved under the condition | ||
− | + | $$ | |
+ | \sum _ { p } { | ||
+ | \frac{f ( p ) }{p} | ||
+ | } { \mathop{\rm log} } p \sim \tau \cdot { \mathop{\rm log} } x, | ||
+ | $$ | ||
− | which is much weaker than (a1). However, | + | which is much weaker than (a1). However, $ 0 \leq f ( p ) \leq G $ |
+ | and some other restrictions must be assumed. There are also corresponding, complicated, results on complex-valued multiplicative functions, [[#References|[a7]]], Satz 1.2. | ||
− | In 1968, G. Halász [[#References|[a2]]] gave a more satisfactory result (see [[Halász mean value theorem|Halász mean value theorem]]). In 1986, A. Hildebrand [[#References|[a4]]] proved a Wirsing-type theorem by elementary means (his result also contains a proof of the Erdös–Wintner conjecture): There exists a universal constant | + | In 1968, G. Halász [[#References|[a2]]] gave a more satisfactory result (see [[Halász mean value theorem|Halász mean value theorem]]). In 1986, A. Hildebrand [[#References|[a4]]] proved a Wirsing-type theorem by elementary means (his result also contains a proof of the Erdös–Wintner conjecture): There exists a universal constant $ \gamma > 0 $ |
+ | with the property that for any multiplicative function $ f $ | ||
+ | with values in the interval $ [ - 1, + 1 ] \subset \mathbf R $ | ||
+ | and with divergent series $ \sum _ {p} {1 / p } \cdot ( 1 - f ( p ) ) $, | ||
+ | the estimate | ||
− | + | $$ | |
+ | \left | { { | ||
+ | \frac{1}{x} | ||
+ | } \cdot \sum _ {n \leq x } f ( n ) } \right | \leq \gamma \cdot \left ( 1 + \sum _ {p \leq x } { | ||
+ | \frac{1}{p} | ||
+ | } \cdot ( 1 - f ( p ) ) \right ) ^ {- {1 / 2 } } | ||
+ | $$ | ||
− | holds for any | + | holds for any $ x \geq 2 $. |
+ | As shown in [[#References|[a3]]], it is possible to deduce stronger estimates by analytical methods. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Erdös, "Some unsolved problems" ''Michigan Math. J.'' , '''4''' (1957) pp. 291–300</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Halász, "Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen" ''Acta Math. Acad. Sci. Hung.'' , '''19''' (1968) pp. 365–403</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Halász, "On the distribution of additive and the mean values of multiplicative arithmetic functions" ''Studia Sci. Math. Hung.'' , '''6''' (1971) pp. 211–233</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Hildebrand, "On Wirsing's mean value theorem for multiplicative functions" ''Bull. London Math. Soc.'' , '''18''' (1986) pp. 147–152</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B.V. Levin, A.S. Fainleib, "Application of certain integral equations to questions of the theory of numbers" ''Uspekhi Mat. Nauk'' , '''22''' : 3 (135) (1967) pp. 119–197 (In Russian)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> E. Wirsing, "Das asymptotische Verhalten von Summen über multiplikative Funktionen" ''Math. Ann.'' , '''143''' (1961) pp. 75–102</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> E. Wirsing, "Das asymptotische Verhalten von Summen über multiplikative Funktionen, II" ''Acta Math. Acad. Sci. Hung.'' , '''18''' (1967) pp. 411–467</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Erdös, "Some unsolved problems" ''Michigan Math. J.'' , '''4''' (1957) pp. 291–300</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Halász, "Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen" ''Acta Math. Acad. Sci. Hung.'' , '''19''' (1968) pp. 365–403</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Halász, "On the distribution of additive and the mean values of multiplicative arithmetic functions" ''Studia Sci. Math. Hung.'' , '''6''' (1971) pp. 211–233</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Hildebrand, "On Wirsing's mean value theorem for multiplicative functions" ''Bull. London Math. Soc.'' , '''18''' (1986) pp. 147–152</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B.V. Levin, A.S. Fainleib, "Application of certain integral equations to questions of the theory of numbers" ''Uspekhi Mat. Nauk'' , '''22''' : 3 (135) (1967) pp. 119–197 (In Russian)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> E. Wirsing, "Das asymptotische Verhalten von Summen über multiplikative Funktionen" ''Math. Ann.'' , '''143''' (1961) pp. 75–102</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> E. Wirsing, "Das asymptotische Verhalten von Summen über multiplikative Funktionen, II" ''Acta Math. Acad. Sci. Hung.'' , '''18''' (1967) pp. 411–467</TD></TR></table> |
Latest revision as of 08:29, 6 June 2020
Multiplicative arithmetic functions $ f : \mathbf N \rightarrow \mathbf C $
are determined by their values at the prime powers (cf. Multiplicative arithmetic function). Higher prime powers $ p ^ {k} $,
$ k \geq 2 $,
are rare, and so the behaviour of $ f $
at the primes should strongly influence the behaviour of $ f $
in general. This vague idea, which also lies behind the theorems of Delange and Elliott (see Delange theorem; Elliott–Daboussi theorem), led E. Wirsing in 1961 [a6] to the following result, which provides asymptotic formulas for a large class of non-negative multiplicative functions.
Let $ f $ be a non-negative multiplicative function. Assume that the values of $ f $ at the primes satisfy, with some positive constant $ \tau $,
$$ \tag{a1 } \sum _ {p \leq x } f ( p ) \cdot { \mathop{\rm log} } p = ( \tau + o ( 1 ) ) \cdot x \textrm{ as } x \rightarrow \infty, $$
and that the values of $ f $ at higher prime powers are not "too large" :
$$ f ( p ^ {k} ) \leq \gamma _ {1} \cdot \gamma _ {2} ^ {k} \textrm{ for } k = 2,3 \dots $$
where $ 0 \leq \gamma _ {2} < 2 $. Then
$$ \tag{a2 } \sum _ {n \leq x } f ( n ) = ( 1 + o ( 1 ) ) \cdot { \frac{x}{ { \mathop{\rm log} } x } } \cdot $$
$$ \cdot { \frac{e ^ {- {\mathcal C} \tau } }{\Gamma ( \tau ) } } \cdot \prod _ {p \leq x } \left ( 1 + { \frac{f ( p ) }{p} } + { \frac{f ( p ^ {2} ) }{p ^ {2} } } + \dots \right ) . $$
The proof uses an inversion of the order of summation in $ \sum _ {n \leq x } f ( n ) \cdot { \mathop{\rm log} } n = \sum _ {n \leq x } f ( n ) \cdot \sum _ { {{p ^ {k} } \mid n } } { \mathop{\rm log} } p ^ {k} $, to show that
$$ \sum _ {n \leq x } f ( n ) \sim \tau \cdot { \frac{x}{ { \mathop{\rm log} } x } } \cdot \sum _ {n \leq x } { \frac{1}{n} } \cdot f ( n ) . $$
The last sum may be dealt with by elementary arguments or by a skilful application of the Hardy–Littlewood–Karamata Tauberian theorem (cf. Tauberian theorems).
In 1967, B.V. Levin and A.S. Fainleib [a5] also gave asymptotic evaluations of sums $ \sum _ {n \leq x } f ( n ) $ for multiplicative functions $ f $, by reducing the problem to the study of the asymptotic behaviour of solutions of integral equations of the form $ t \cdot z ( t ) = \int _ {0} ^ {t} {K ( t - u ) z ( u ) } {du } $.
In [a6], Wirsing also deduced results for complex-valued multiplicative functions. Unfortunately, these results did not contain the prime number theorem (in the form $ \sum _ {n \leq x } \mu ( n ) = o ( x ) $; cf. also de la Vallée-Poussin theorem), and they did not settle the Erdös–Wintner conjecture: Any multiplicative function assuming only the values $ + 1 $ and $ - 1 $ has a mean value (see [a1]).
But six years later, in 1967 [a7], Wirsing was able to settle this conjecture. He proved in an elementary, but complicated, way several results on multiplicative functions. For example: If $ f $ is a real-valued multiplicative function and if $ | f | \leq 1 $, then the mean value $ M ( f ) $ exists [a7], Satz 1.2.2.
The asymptotic formula (a2) can now be proved under the condition
$$ \sum _ { p } { \frac{f ( p ) }{p} } { \mathop{\rm log} } p \sim \tau \cdot { \mathop{\rm log} } x, $$
which is much weaker than (a1). However, $ 0 \leq f ( p ) \leq G $ and some other restrictions must be assumed. There are also corresponding, complicated, results on complex-valued multiplicative functions, [a7], Satz 1.2.
In 1968, G. Halász [a2] gave a more satisfactory result (see Halász mean value theorem). In 1986, A. Hildebrand [a4] proved a Wirsing-type theorem by elementary means (his result also contains a proof of the Erdös–Wintner conjecture): There exists a universal constant $ \gamma > 0 $ with the property that for any multiplicative function $ f $ with values in the interval $ [ - 1, + 1 ] \subset \mathbf R $ and with divergent series $ \sum _ {p} {1 / p } \cdot ( 1 - f ( p ) ) $, the estimate
$$ \left | { { \frac{1}{x} } \cdot \sum _ {n \leq x } f ( n ) } \right | \leq \gamma \cdot \left ( 1 + \sum _ {p \leq x } { \frac{1}{p} } \cdot ( 1 - f ( p ) ) \right ) ^ {- {1 / 2 } } $$
holds for any $ x \geq 2 $. As shown in [a3], it is possible to deduce stronger estimates by analytical methods.
References
[a1] | P. Erdös, "Some unsolved problems" Michigan Math. J. , 4 (1957) pp. 291–300 |
[a2] | G. Halász, "Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen" Acta Math. Acad. Sci. Hung. , 19 (1968) pp. 365–403 |
[a3] | G. Halász, "On the distribution of additive and the mean values of multiplicative arithmetic functions" Studia Sci. Math. Hung. , 6 (1971) pp. 211–233 |
[a4] | A. Hildebrand, "On Wirsing's mean value theorem for multiplicative functions" Bull. London Math. Soc. , 18 (1986) pp. 147–152 |
[a5] | B.V. Levin, A.S. Fainleib, "Application of certain integral equations to questions of the theory of numbers" Uspekhi Mat. Nauk , 22 : 3 (135) (1967) pp. 119–197 (In Russian) |
[a6] | E. Wirsing, "Das asymptotische Verhalten von Summen über multiplikative Funktionen" Math. Ann. , 143 (1961) pp. 75–102 |
[a7] | E. Wirsing, "Das asymptotische Verhalten von Summen über multiplikative Funktionen, II" Acta Math. Acad. Sci. Hung. , 18 (1967) pp. 411–467 |
Wirsing theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wirsing_theorems&oldid=49229