Namespaces
Variants
Actions

Difference between revisions of "Whitehead torsion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
An element of the reduced [[Whitehead group|Whitehead group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978101.png" />, constructed from a complex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978102.png" />-modules. In particular, one has the Whitehead torsion of a mapping complex. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978103.png" /> be a ring and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978104.png" /> be a finitely-generated free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978105.png" />-module. Given two bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978108.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978109.png" />, then the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781010.png" /> is invertible and, hence, defines an element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781011.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781013.png" />, the bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781015.png" /> are said to be equivalent. It is clear that
+
<!--
 +
w0978101.png
 +
$#A+1 = 95 n = 0
 +
$#C+1 = 95 : ~/encyclopedia/old_files/data/W097/W.0907810 Whitehead torsion
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781016.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
For any exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781017.png" /> of free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781018.png" />-modules and bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781022.png" /> one can define a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781024.png" />, where the images of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781025.png" /> form the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781026.png" />. The equivalence class of this basis depends only on those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781028.png" />. Now let
+
An element of the reduced [[Whitehead group|Whitehead group]]  $  \overline{K}\; _ {1} A $,
 +
constructed from a complex of $  A $-
 +
modules. In particular, one has the Whitehead torsion of a mapping complex. Let  $  A $
 +
be a ring and let  $  F $
 +
be a finitely-generated free  $  A $-
 +
module. Given two bases  $  b = ( b _ {1} \dots b _ {k} ) $
 +
and $  c = ( c _ {1} \dots c _ {k} ) $
 +
of $  F $,
 +
if  $  c _ {i} = \sum _ {j=} 1  ^ {k} a _ {ij} b _ {j} $,  
 +
then the matrix  $  \| a _ {ij} \| $
 +
is invertible and, hence, defines an element of the group  $  \overline{K}\; _ {1} A $,
 +
denoted by  $  [ c / b ] $.  
 +
If  $  [ c/b ] = 0 $,
 +
the bases  $  b $
 +
and $  c $
 +
are said to be equivalent. It is clear that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781029.png" /></td> </tr></table>
+
$$
 +
[ e/c ] + [ c/b ]  = \
 +
[ e/b ] ,\  [ b/b ]  =  0 .
 +
$$
  
be a complex of free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781030.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781031.png" /> with chosen bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781032.png" />, whose homology complex is free, with a chosen basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781033.png" />. Let the images of the homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781034.png" /> again be free, with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781035.png" />. The combinations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781036.png" /> define a new basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781037.png" />. Then the torsion of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781038.png" /> is given by the formula
+
For any exact sequence  $  0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $
 +
of free $  A $-
 +
modules and bases $  e $
 +
of  $  E $
 +
and  $  g $
 +
of  $  G $
 +
one can define a basis  $  eg = ( e, f  ) $
 +
of  $  F $,  
 +
where the images of the elements  $  f $
 +
form the basis $  g $.  
 +
The equivalence class of this basis depends only on those of $  e $
 +
and  $  g $.  
 +
Now let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781039.png" /></td> </tr></table>
+
$$
 +
C : C _ {n}  \mathop \rightarrow \limits ^  \partial    C _ {n-} 1 \
 +
\mathop \rightarrow \limits ^  \partial  \dots  \mathop \rightarrow \limits ^  \partial    C _ {0}  $$
  
This torsion does not depend on the choice of the bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781040.png" /> for the boundary groups but only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781042.png" />.
+
be a complex of free  $  A $-
 +
modules  $  C _ {i} $
 +
with chosen bases  $  c _ {i} $,
 +
whose homology complex is free, with a chosen basis  $  h _ {i} $.
 +
Let the images of the homomorphisms  $  \partial  : C _ {i+} 1 \rightarrow C _ {i} $
 +
again be free, with basis  $  b _ {i} $.  
 +
The combinations  $  b _ {i} h _ {i} b _ {i-} 1 $
 +
define a new basis in  $  C _ {i} $.  
 +
Then the torsion of the complex  $  C $
 +
is given by the formula
  
Given a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781043.png" /> consisting of a finite connected complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781044.png" /> and a subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781045.png" /> which is a [[Deformation retract|deformation retract]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781046.png" />, one puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781049.png" /> are the universal covering complexes for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781052.png" /> defines a chain mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781053.png" /> and hence a mapping of chain groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781054.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781055.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781056.png" />-module. One thus obtains a free chain complex
+
$$
 +
\tau ( C)  = - \sum _ { i= } 0 ^ { n }  (- 1)  ^ {i}
 +
[ c _ {i} / b _ {i} h _ {i} b _ {i-} 1 ]  \in  \overline{K}\; _ {1} A.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781057.png" /></td> </tr></table>
+
This torsion does not depend on the choice of the bases  $  b _ {i} $
 +
for the boundary groups but only on  $  c _ {i} $
 +
and  $  h _ {i} $.
  
over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781058.png" />. The homology of this complex is trivial, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781059.png" /> is a deformation retract of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781060.png" />.
+
Given a pair  $  ( K , L) $
 +
consisting of a finite connected complex $  K $
 +
and a subcomplex  $  L $
 +
which is a [[Deformation retract|deformation retract]] of  $  K $,  
 +
one puts  $  \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $.  
 +
If  $  \widetilde{K}  $
 +
and  $  \widetilde{L}  $
 +
are the universal covering complexes for  $  K $
 +
and  $  L $,
 +
then  $  \sigma \in \Pi $
 +
defines a chain mapping  $  \sigma : ( \widetilde{k}  , \widetilde{i}  ) \rightarrow ( \widetilde{K}  , \widetilde{L}  ) $
 +
and hence a mapping of chain groups  $  \sigma _ {*} : C ( \widetilde{K}  , \widetilde{L}  ) \rightarrow C ( \widetilde{K}  , \widetilde{L}  ) $,
 +
i.e. $  C _ {p} ( \widetilde{K}  , \widetilde{L}  ) $
 +
is a  $  \mathbf Z [ \Pi ] $-
 +
module. One thus obtains a free chain complex
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781061.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781062.png" />-chains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781063.png" />. For each chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781064.png" /> one chooses a representative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781065.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781066.png" /> lying above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781067.png" /> and fixes its orientation. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781068.png" /> is a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781069.png" />; hence there is defined a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781070.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781071.png" />, called the torsion. In general it depends on the choice of the bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781072.png" />. However, the image of this set in the Whitehead group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781073.png" /> consists of a single element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781074.png" />, called the Whitehead torsion of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781075.png" />.
+
$$
 +
C _ {n} ( \widetilde{K}  , \widetilde{L}  )  \rightarrow  C _ {n-} 1
 +
( \widetilde{K}  , \widetilde{L}  )  \rightarrow \dots \rightarrow  C _ {0} ( \widetilde{K}  , \widetilde{L}  )
 +
$$
  
An important property of the Whitehead torsion is its combinatorial invariance. Whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781076.png" /> is a topological invariant is not known (1984).
+
over  $  \mathbf Z [ \Pi ] $.
 +
The homology of this complex is trivial, i.e. $  \widetilde{L}  $
 +
is a deformation retract of  $  \widetilde{K}  $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781077.png" /> be a homotopy equivalence (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781078.png" /> chain complexes). Then the torsion of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781079.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781080.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781081.png" /> is the mapping cylinder of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781082.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781083.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781084.png" /> is called a simple homotopy equivalence. Properties of the torsion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781085.png" /> are: 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781086.png" /> is an inclusion, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781087.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781088.png" />; 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781089.png" /> is homotopic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781090.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781091.png" />; 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781092.png" /> is the identity mapping of a simply-connected complex with Euler characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781093.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781094.png" />.
+
Let $  e _ {1} \dots e _  \alpha  $
 +
be  $  p $-
 +
chains in  $  K \setminus  L $.
 +
For each chain  $  e _ {i} $
 +
one chooses a representative  $  \widetilde{e}  _ {i} $
 +
in  $  \widetilde{K}  $
 +
lying above  $  e _ {i} $
 +
and fixes its orientation. Then  $  c _ {p} = ( \widetilde{e}  _ {1} \dots \widetilde{e}  _  \alpha  ) $
 +
is a basis in  $  C _ {p} ( \widetilde{K}  , \widetilde{L}  ) $;
 +
hence there is defined a subset  $  \tau C ( \widetilde{K}  , \widetilde{L}  ) $
 +
of  $  \widetilde{K}  _ {1} \mathbf Z [ \Pi ] $,
 +
called the torsion. In general it depends on the choice of the bases  $  c _ {p} $.
 +
However, the image of this set in the Whitehead group  $  \mathop{\rm Wh} ( \Pi ) $
 +
consists of a single element  $  \tau ( K, L) $,
 +
called the Whitehead torsion of the pair  $  ( K , L) $.
 +
 
 +
An important property of the Whitehead torsion is its combinatorial invariance. Whether  $  \tau ( K, L) $
 +
is a topological invariant is not known (1984).
 +
 
 +
Let  $  f:  X \rightarrow Y $
 +
be a homotopy equivalence ( $  X, Y $
 +
chain complexes). Then the torsion of the mapping $  f $
 +
is defined as $  \tau ( f  ) = f _ {*} \tau ( M _ {f} , X) \in  \mathop{\rm Wh} ( \pi _ {1} Y) $,  
 +
where $  M _ {f} $
 +
is the mapping cylinder of $  f $.  
 +
If $  \tau ( f  ) = 0 $,  
 +
then $  f $
 +
is called a simple homotopy equivalence. Properties of the torsion $  \tau ( f  ) $
 +
are: 1) if $  i : L \rightarrow K $
 +
is an inclusion, then $  \tau ( i) = \tau ( K , L) $;  
 +
2) $  \tau ( g \circ f  ) = \tau ( g) + g _ {*} \tau ( f  ) $;  
 +
3) if $  f $
 +
is homotopic to $  f ^ { \prime } $,  
 +
then $  \tau ( f  ) = \tau ( f ^ { \prime } ) $;  
 +
4) if $  I $
 +
is the identity mapping of a simply-connected complex with Euler characteristic $  \chi $,  
 +
then $  \tau ( I \times f  ) = \chi \cdot \tau ( f  ) $.
  
 
====References====
 
====References====
Line 29: Line 138:
  
 
====Comments====
 
====Comments====
The topological invariance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781095.png" /> is treated in [[#References|[a1]]]–[[#References|[a3]]].
+
The topological invariance of $  \tau ( K, L) $
 +
is treated in [[#References|[a1]]]–[[#References|[a3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.A. Chapman,  "Topological invariance of Whitehead torsion"  ''Amer. J. Math.'' , '''96'''  (1974)  pp. 488–497</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Ferry,  "The homeomorphism group of a compact Hilbert cube manifold is an ANR"  ''Ann. of Math.'' , '''106'''  (1977)  pp. 101–119</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.E. West,  "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk"  ''Ann. of Math.'' , '''106'''  (1977)  pp. 1–18</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.A. Chapman,  "Topological invariance of Whitehead torsion"  ''Amer. J. Math.'' , '''96'''  (1974)  pp. 488–497</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Ferry,  "The homeomorphism group of a compact Hilbert cube manifold is an ANR"  ''Ann. of Math.'' , '''106'''  (1977)  pp. 101–119</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.E. West,  "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk"  ''Ann. of Math.'' , '''106'''  (1977)  pp. 1–18</TD></TR></table>

Revision as of 08:29, 6 June 2020


An element of the reduced Whitehead group $ \overline{K}\; _ {1} A $, constructed from a complex of $ A $- modules. In particular, one has the Whitehead torsion of a mapping complex. Let $ A $ be a ring and let $ F $ be a finitely-generated free $ A $- module. Given two bases $ b = ( b _ {1} \dots b _ {k} ) $ and $ c = ( c _ {1} \dots c _ {k} ) $ of $ F $, if $ c _ {i} = \sum _ {j=} 1 ^ {k} a _ {ij} b _ {j} $, then the matrix $ \| a _ {ij} \| $ is invertible and, hence, defines an element of the group $ \overline{K}\; _ {1} A $, denoted by $ [ c / b ] $. If $ [ c/b ] = 0 $, the bases $ b $ and $ c $ are said to be equivalent. It is clear that

$$ [ e/c ] + [ c/b ] = \ [ e/b ] ,\ [ b/b ] = 0 . $$

For any exact sequence $ 0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $ of free $ A $- modules and bases $ e $ of $ E $ and $ g $ of $ G $ one can define a basis $ eg = ( e, f ) $ of $ F $, where the images of the elements $ f $ form the basis $ g $. The equivalence class of this basis depends only on those of $ e $ and $ g $. Now let

$$ C : C _ {n} \mathop \rightarrow \limits ^ \partial C _ {n-} 1 \ \mathop \rightarrow \limits ^ \partial \dots \mathop \rightarrow \limits ^ \partial C _ {0} $$

be a complex of free $ A $- modules $ C _ {i} $ with chosen bases $ c _ {i} $, whose homology complex is free, with a chosen basis $ h _ {i} $. Let the images of the homomorphisms $ \partial : C _ {i+} 1 \rightarrow C _ {i} $ again be free, with basis $ b _ {i} $. The combinations $ b _ {i} h _ {i} b _ {i-} 1 $ define a new basis in $ C _ {i} $. Then the torsion of the complex $ C $ is given by the formula

$$ \tau ( C) = - \sum _ { i= } 0 ^ { n } (- 1) ^ {i} [ c _ {i} / b _ {i} h _ {i} b _ {i-} 1 ] \in \overline{K}\; _ {1} A. $$

This torsion does not depend on the choice of the bases $ b _ {i} $ for the boundary groups but only on $ c _ {i} $ and $ h _ {i} $.

Given a pair $ ( K , L) $ consisting of a finite connected complex $ K $ and a subcomplex $ L $ which is a deformation retract of $ K $, one puts $ \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $. If $ \widetilde{K} $ and $ \widetilde{L} $ are the universal covering complexes for $ K $ and $ L $, then $ \sigma \in \Pi $ defines a chain mapping $ \sigma : ( \widetilde{k} , \widetilde{i} ) \rightarrow ( \widetilde{K} , \widetilde{L} ) $ and hence a mapping of chain groups $ \sigma _ {*} : C ( \widetilde{K} , \widetilde{L} ) \rightarrow C ( \widetilde{K} , \widetilde{L} ) $, i.e. $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $ is a $ \mathbf Z [ \Pi ] $- module. One thus obtains a free chain complex

$$ C _ {n} ( \widetilde{K} , \widetilde{L} ) \rightarrow C _ {n-} 1 ( \widetilde{K} , \widetilde{L} ) \rightarrow \dots \rightarrow C _ {0} ( \widetilde{K} , \widetilde{L} ) $$

over $ \mathbf Z [ \Pi ] $. The homology of this complex is trivial, i.e. $ \widetilde{L} $ is a deformation retract of $ \widetilde{K} $.

Let $ e _ {1} \dots e _ \alpha $ be $ p $- chains in $ K \setminus L $. For each chain $ e _ {i} $ one chooses a representative $ \widetilde{e} _ {i} $ in $ \widetilde{K} $ lying above $ e _ {i} $ and fixes its orientation. Then $ c _ {p} = ( \widetilde{e} _ {1} \dots \widetilde{e} _ \alpha ) $ is a basis in $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $; hence there is defined a subset $ \tau C ( \widetilde{K} , \widetilde{L} ) $ of $ \widetilde{K} _ {1} \mathbf Z [ \Pi ] $, called the torsion. In general it depends on the choice of the bases $ c _ {p} $. However, the image of this set in the Whitehead group $ \mathop{\rm Wh} ( \Pi ) $ consists of a single element $ \tau ( K, L) $, called the Whitehead torsion of the pair $ ( K , L) $.

An important property of the Whitehead torsion is its combinatorial invariance. Whether $ \tau ( K, L) $ is a topological invariant is not known (1984).

Let $ f: X \rightarrow Y $ be a homotopy equivalence ( $ X, Y $ chain complexes). Then the torsion of the mapping $ f $ is defined as $ \tau ( f ) = f _ {*} \tau ( M _ {f} , X) \in \mathop{\rm Wh} ( \pi _ {1} Y) $, where $ M _ {f} $ is the mapping cylinder of $ f $. If $ \tau ( f ) = 0 $, then $ f $ is called a simple homotopy equivalence. Properties of the torsion $ \tau ( f ) $ are: 1) if $ i : L \rightarrow K $ is an inclusion, then $ \tau ( i) = \tau ( K , L) $; 2) $ \tau ( g \circ f ) = \tau ( g) + g _ {*} \tau ( f ) $; 3) if $ f $ is homotopic to $ f ^ { \prime } $, then $ \tau ( f ) = \tau ( f ^ { \prime } ) $; 4) if $ I $ is the identity mapping of a simply-connected complex with Euler characteristic $ \chi $, then $ \tau ( I \times f ) = \chi \cdot \tau ( f ) $.

References

[1] J.H.C. Whitehead, "Simple homotopy types" Amer. Math. J. , 72 (1950) pp. 1–57
[2] J.W. Milnor, "Whitehead torsion" Bull. Amer. Math. Soc. , 72 (1966) pp. 358–426

Comments

The topological invariance of $ \tau ( K, L) $ is treated in [a1][a3].

References

[a1] T.A. Chapman, "Topological invariance of Whitehead torsion" Amer. J. Math. , 96 (1974) pp. 488–497
[a2] S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" Ann. of Math. , 106 (1977) pp. 101–119
[a3] J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" Ann. of Math. , 106 (1977) pp. 1–18
How to Cite This Entry:
Whitehead torsion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_torsion&oldid=49211