|
|
Line 1: |
Line 1: |
− | An element of the reduced [[Whitehead group|Whitehead group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978101.png" />, constructed from a complex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978102.png" />-modules. In particular, one has the Whitehead torsion of a mapping complex. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978103.png" /> be a ring and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978104.png" /> be a finitely-generated free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978105.png" />-module. Given two bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978108.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w0978109.png" />, then the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781010.png" /> is invertible and, hence, defines an element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781011.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781013.png" />, the bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781015.png" /> are said to be equivalent. It is clear that
| + | <!-- |
| + | w0978101.png |
| + | $#A+1 = 95 n = 0 |
| + | $#C+1 = 95 : ~/encyclopedia/old_files/data/W097/W.0907810 Whitehead torsion |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781016.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | For any exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781017.png" /> of free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781018.png" />-modules and bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781022.png" /> one can define a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781024.png" />, where the images of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781025.png" /> form the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781026.png" />. The equivalence class of this basis depends only on those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781028.png" />. Now let
| + | An element of the reduced [[Whitehead group|Whitehead group]] $ \overline{K}\; _ {1} A $, |
| + | constructed from a complex of $ A $- |
| + | modules. In particular, one has the Whitehead torsion of a mapping complex. Let $ A $ |
| + | be a ring and let $ F $ |
| + | be a finitely-generated free $ A $- |
| + | module. Given two bases $ b = ( b _ {1} \dots b _ {k} ) $ |
| + | and $ c = ( c _ {1} \dots c _ {k} ) $ |
| + | of $ F $, |
| + | if $ c _ {i} = \sum _ {j=} 1 ^ {k} a _ {ij} b _ {j} $, |
| + | then the matrix $ \| a _ {ij} \| $ |
| + | is invertible and, hence, defines an element of the group $ \overline{K}\; _ {1} A $, |
| + | denoted by $ [ c / b ] $. |
| + | If $ [ c/b ] = 0 $, |
| + | the bases $ b $ |
| + | and $ c $ |
| + | are said to be equivalent. It is clear that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781029.png" /></td> </tr></table>
| + | $$ |
| + | [ e/c ] + [ c/b ] = \ |
| + | [ e/b ] ,\ [ b/b ] = 0 . |
| + | $$ |
| | | |
− | be a complex of free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781030.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781031.png" /> with chosen bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781032.png" />, whose homology complex is free, with a chosen basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781033.png" />. Let the images of the homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781034.png" /> again be free, with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781035.png" />. The combinations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781036.png" /> define a new basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781037.png" />. Then the torsion of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781038.png" /> is given by the formula
| + | For any exact sequence $ 0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $ |
| + | of free $ A $- |
| + | modules and bases $ e $ |
| + | of $ E $ |
| + | and $ g $ |
| + | of $ G $ |
| + | one can define a basis $ eg = ( e, f ) $ |
| + | of $ F $, |
| + | where the images of the elements $ f $ |
| + | form the basis $ g $. |
| + | The equivalence class of this basis depends only on those of $ e $ |
| + | and $ g $. |
| + | Now let |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781039.png" /></td> </tr></table>
| + | $$ |
| + | C : C _ {n} \mathop \rightarrow \limits ^ \partial C _ {n-} 1 \ |
| + | \mathop \rightarrow \limits ^ \partial \dots \mathop \rightarrow \limits ^ \partial C _ {0} $$ |
| | | |
− | This torsion does not depend on the choice of the bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781040.png" /> for the boundary groups but only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781042.png" />.
| + | be a complex of free $ A $- |
| + | modules $ C _ {i} $ |
| + | with chosen bases $ c _ {i} $, |
| + | whose homology complex is free, with a chosen basis $ h _ {i} $. |
| + | Let the images of the homomorphisms $ \partial : C _ {i+} 1 \rightarrow C _ {i} $ |
| + | again be free, with basis $ b _ {i} $. |
| + | The combinations $ b _ {i} h _ {i} b _ {i-} 1 $ |
| + | define a new basis in $ C _ {i} $. |
| + | Then the torsion of the complex $ C $ |
| + | is given by the formula |
| | | |
− | Given a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781043.png" /> consisting of a finite connected complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781044.png" /> and a subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781045.png" /> which is a [[Deformation retract|deformation retract]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781046.png" />, one puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781049.png" /> are the universal covering complexes for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781052.png" /> defines a chain mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781053.png" /> and hence a mapping of chain groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781054.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781055.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781056.png" />-module. One thus obtains a free chain complex
| + | $$ |
| + | \tau ( C) = - \sum _ { i= } 0 ^ { n } (- 1) ^ {i} |
| + | [ c _ {i} / b _ {i} h _ {i} b _ {i-} 1 ] \in \overline{K}\; _ {1} A. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781057.png" /></td> </tr></table>
| + | This torsion does not depend on the choice of the bases $ b _ {i} $ |
| + | for the boundary groups but only on $ c _ {i} $ |
| + | and $ h _ {i} $. |
| | | |
− | over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781058.png" />. The homology of this complex is trivial, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781059.png" /> is a deformation retract of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781060.png" />.
| + | Given a pair $ ( K , L) $ |
| + | consisting of a finite connected complex $ K $ |
| + | and a subcomplex $ L $ |
| + | which is a [[Deformation retract|deformation retract]] of $ K $, |
| + | one puts $ \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $. |
| + | If $ \widetilde{K} $ |
| + | and $ \widetilde{L} $ |
| + | are the universal covering complexes for $ K $ |
| + | and $ L $, |
| + | then $ \sigma \in \Pi $ |
| + | defines a chain mapping $ \sigma : ( \widetilde{k} , \widetilde{i} ) \rightarrow ( \widetilde{K} , \widetilde{L} ) $ |
| + | and hence a mapping of chain groups $ \sigma _ {*} : C ( \widetilde{K} , \widetilde{L} ) \rightarrow C ( \widetilde{K} , \widetilde{L} ) $, |
| + | i.e. $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $ |
| + | is a $ \mathbf Z [ \Pi ] $- |
| + | module. One thus obtains a free chain complex |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781061.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781062.png" />-chains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781063.png" />. For each chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781064.png" /> one chooses a representative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781065.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781066.png" /> lying above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781067.png" /> and fixes its orientation. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781068.png" /> is a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781069.png" />; hence there is defined a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781070.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781071.png" />, called the torsion. In general it depends on the choice of the bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781072.png" />. However, the image of this set in the Whitehead group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781073.png" /> consists of a single element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781074.png" />, called the Whitehead torsion of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781075.png" />.
| + | $$ |
| + | C _ {n} ( \widetilde{K} , \widetilde{L} ) \rightarrow C _ {n-} 1 |
| + | ( \widetilde{K} , \widetilde{L} ) \rightarrow \dots \rightarrow C _ {0} ( \widetilde{K} , \widetilde{L} ) |
| + | $$ |
| | | |
− | An important property of the Whitehead torsion is its combinatorial invariance. Whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781076.png" /> is a topological invariant is not known (1984).
| + | over $ \mathbf Z [ \Pi ] $. |
| + | The homology of this complex is trivial, i.e. $ \widetilde{L} $ |
| + | is a deformation retract of $ \widetilde{K} $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781077.png" /> be a homotopy equivalence (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781078.png" /> chain complexes). Then the torsion of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781079.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781080.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781081.png" /> is the mapping cylinder of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781082.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781083.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781084.png" /> is called a simple homotopy equivalence. Properties of the torsion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781085.png" /> are: 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781086.png" /> is an inclusion, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781087.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781088.png" />; 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781089.png" /> is homotopic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781090.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781091.png" />; 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781092.png" /> is the identity mapping of a simply-connected complex with Euler characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781093.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781094.png" />. | + | Let $ e _ {1} \dots e _ \alpha $ |
| + | be $ p $- |
| + | chains in $ K \setminus L $. |
| + | For each chain $ e _ {i} $ |
| + | one chooses a representative $ \widetilde{e} _ {i} $ |
| + | in $ \widetilde{K} $ |
| + | lying above $ e _ {i} $ |
| + | and fixes its orientation. Then $ c _ {p} = ( \widetilde{e} _ {1} \dots \widetilde{e} _ \alpha ) $ |
| + | is a basis in $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $; |
| + | hence there is defined a subset $ \tau C ( \widetilde{K} , \widetilde{L} ) $ |
| + | of $ \widetilde{K} _ {1} \mathbf Z [ \Pi ] $, |
| + | called the torsion. In general it depends on the choice of the bases $ c _ {p} $. |
| + | However, the image of this set in the Whitehead group $ \mathop{\rm Wh} ( \Pi ) $ |
| + | consists of a single element $ \tau ( K, L) $, |
| + | called the Whitehead torsion of the pair $ ( K , L) $. |
| + | |
| + | An important property of the Whitehead torsion is its combinatorial invariance. Whether $ \tau ( K, L) $ |
| + | is a topological invariant is not known (1984). |
| + | |
| + | Let $ f: X \rightarrow Y $ |
| + | be a homotopy equivalence ( $ X, Y $ |
| + | chain complexes). Then the torsion of the mapping $ f $ |
| + | is defined as $ \tau ( f ) = f _ {*} \tau ( M _ {f} , X) \in \mathop{\rm Wh} ( \pi _ {1} Y) $, |
| + | where $ M _ {f} $ |
| + | is the mapping cylinder of $ f $. |
| + | If $ \tau ( f ) = 0 $, |
| + | then $ f $ |
| + | is called a simple homotopy equivalence. Properties of the torsion $ \tau ( f ) $ |
| + | are: 1) if $ i : L \rightarrow K $ |
| + | is an inclusion, then $ \tau ( i) = \tau ( K , L) $; |
| + | 2) $ \tau ( g \circ f ) = \tau ( g) + g _ {*} \tau ( f ) $; |
| + | 3) if $ f $ |
| + | is homotopic to $ f ^ { \prime } $, |
| + | then $ \tau ( f ) = \tau ( f ^ { \prime } ) $; |
| + | 4) if $ I $ |
| + | is the identity mapping of a simply-connected complex with Euler characteristic $ \chi $, |
| + | then $ \tau ( I \times f ) = \chi \cdot \tau ( f ) $. |
| | | |
| ====References==== | | ====References==== |
Line 29: |
Line 138: |
| | | |
| ====Comments==== | | ====Comments==== |
− | The topological invariance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097810/w09781095.png" /> is treated in [[#References|[a1]]]–[[#References|[a3]]]. | + | The topological invariance of $ \tau ( K, L) $ |
| + | is treated in [[#References|[a1]]]–[[#References|[a3]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.A. Chapman, "Topological invariance of Whitehead torsion" ''Amer. J. Math.'' , '''96''' (1974) pp. 488–497</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" ''Ann. of Math.'' , '''106''' (1977) pp. 101–119</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" ''Ann. of Math.'' , '''106''' (1977) pp. 1–18</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.A. Chapman, "Topological invariance of Whitehead torsion" ''Amer. J. Math.'' , '''96''' (1974) pp. 488–497</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" ''Ann. of Math.'' , '''106''' (1977) pp. 101–119</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" ''Ann. of Math.'' , '''106''' (1977) pp. 1–18</TD></TR></table> |
An element of the reduced Whitehead group $ \overline{K}\; _ {1} A $,
constructed from a complex of $ A $-
modules. In particular, one has the Whitehead torsion of a mapping complex. Let $ A $
be a ring and let $ F $
be a finitely-generated free $ A $-
module. Given two bases $ b = ( b _ {1} \dots b _ {k} ) $
and $ c = ( c _ {1} \dots c _ {k} ) $
of $ F $,
if $ c _ {i} = \sum _ {j=} 1 ^ {k} a _ {ij} b _ {j} $,
then the matrix $ \| a _ {ij} \| $
is invertible and, hence, defines an element of the group $ \overline{K}\; _ {1} A $,
denoted by $ [ c / b ] $.
If $ [ c/b ] = 0 $,
the bases $ b $
and $ c $
are said to be equivalent. It is clear that
$$
[ e/c ] + [ c/b ] = \
[ e/b ] ,\ [ b/b ] = 0 .
$$
For any exact sequence $ 0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $
of free $ A $-
modules and bases $ e $
of $ E $
and $ g $
of $ G $
one can define a basis $ eg = ( e, f ) $
of $ F $,
where the images of the elements $ f $
form the basis $ g $.
The equivalence class of this basis depends only on those of $ e $
and $ g $.
Now let
$$
C : C _ {n} \mathop \rightarrow \limits ^ \partial C _ {n-} 1 \
\mathop \rightarrow \limits ^ \partial \dots \mathop \rightarrow \limits ^ \partial C _ {0} $$
be a complex of free $ A $-
modules $ C _ {i} $
with chosen bases $ c _ {i} $,
whose homology complex is free, with a chosen basis $ h _ {i} $.
Let the images of the homomorphisms $ \partial : C _ {i+} 1 \rightarrow C _ {i} $
again be free, with basis $ b _ {i} $.
The combinations $ b _ {i} h _ {i} b _ {i-} 1 $
define a new basis in $ C _ {i} $.
Then the torsion of the complex $ C $
is given by the formula
$$
\tau ( C) = - \sum _ { i= } 0 ^ { n } (- 1) ^ {i}
[ c _ {i} / b _ {i} h _ {i} b _ {i-} 1 ] \in \overline{K}\; _ {1} A.
$$
This torsion does not depend on the choice of the bases $ b _ {i} $
for the boundary groups but only on $ c _ {i} $
and $ h _ {i} $.
Given a pair $ ( K , L) $
consisting of a finite connected complex $ K $
and a subcomplex $ L $
which is a deformation retract of $ K $,
one puts $ \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $.
If $ \widetilde{K} $
and $ \widetilde{L} $
are the universal covering complexes for $ K $
and $ L $,
then $ \sigma \in \Pi $
defines a chain mapping $ \sigma : ( \widetilde{k} , \widetilde{i} ) \rightarrow ( \widetilde{K} , \widetilde{L} ) $
and hence a mapping of chain groups $ \sigma _ {*} : C ( \widetilde{K} , \widetilde{L} ) \rightarrow C ( \widetilde{K} , \widetilde{L} ) $,
i.e. $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $
is a $ \mathbf Z [ \Pi ] $-
module. One thus obtains a free chain complex
$$
C _ {n} ( \widetilde{K} , \widetilde{L} ) \rightarrow C _ {n-} 1
( \widetilde{K} , \widetilde{L} ) \rightarrow \dots \rightarrow C _ {0} ( \widetilde{K} , \widetilde{L} )
$$
over $ \mathbf Z [ \Pi ] $.
The homology of this complex is trivial, i.e. $ \widetilde{L} $
is a deformation retract of $ \widetilde{K} $.
Let $ e _ {1} \dots e _ \alpha $
be $ p $-
chains in $ K \setminus L $.
For each chain $ e _ {i} $
one chooses a representative $ \widetilde{e} _ {i} $
in $ \widetilde{K} $
lying above $ e _ {i} $
and fixes its orientation. Then $ c _ {p} = ( \widetilde{e} _ {1} \dots \widetilde{e} _ \alpha ) $
is a basis in $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $;
hence there is defined a subset $ \tau C ( \widetilde{K} , \widetilde{L} ) $
of $ \widetilde{K} _ {1} \mathbf Z [ \Pi ] $,
called the torsion. In general it depends on the choice of the bases $ c _ {p} $.
However, the image of this set in the Whitehead group $ \mathop{\rm Wh} ( \Pi ) $
consists of a single element $ \tau ( K, L) $,
called the Whitehead torsion of the pair $ ( K , L) $.
An important property of the Whitehead torsion is its combinatorial invariance. Whether $ \tau ( K, L) $
is a topological invariant is not known (1984).
Let $ f: X \rightarrow Y $
be a homotopy equivalence ( $ X, Y $
chain complexes). Then the torsion of the mapping $ f $
is defined as $ \tau ( f ) = f _ {*} \tau ( M _ {f} , X) \in \mathop{\rm Wh} ( \pi _ {1} Y) $,
where $ M _ {f} $
is the mapping cylinder of $ f $.
If $ \tau ( f ) = 0 $,
then $ f $
is called a simple homotopy equivalence. Properties of the torsion $ \tau ( f ) $
are: 1) if $ i : L \rightarrow K $
is an inclusion, then $ \tau ( i) = \tau ( K , L) $;
2) $ \tau ( g \circ f ) = \tau ( g) + g _ {*} \tau ( f ) $;
3) if $ f $
is homotopic to $ f ^ { \prime } $,
then $ \tau ( f ) = \tau ( f ^ { \prime } ) $;
4) if $ I $
is the identity mapping of a simply-connected complex with Euler characteristic $ \chi $,
then $ \tau ( I \times f ) = \chi \cdot \tau ( f ) $.
References
[1] | J.H.C. Whitehead, "Simple homotopy types" Amer. Math. J. , 72 (1950) pp. 1–57 |
[2] | J.W. Milnor, "Whitehead torsion" Bull. Amer. Math. Soc. , 72 (1966) pp. 358–426 |
The topological invariance of $ \tau ( K, L) $
is treated in [a1]–[a3].
References
[a1] | T.A. Chapman, "Topological invariance of Whitehead torsion" Amer. J. Math. , 96 (1974) pp. 488–497 |
[a2] | S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" Ann. of Math. , 106 (1977) pp. 101–119 |
[a3] | J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" Ann. of Math. , 106 (1977) pp. 1–18 |