Difference between revisions of "Whitehead torsion"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0978101.png | ||
+ | $#A+1 = 95 n = 0 | ||
+ | $#C+1 = 95 : ~/encyclopedia/old_files/data/W097/W.0907810 Whitehead torsion | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An element of the reduced [[Whitehead group|Whitehead group]] $ \overline{K}\; _ {1} A $, | |
+ | constructed from a complex of $ A $- | ||
+ | modules. In particular, one has the Whitehead torsion of a mapping complex. Let $ A $ | ||
+ | be a ring and let $ F $ | ||
+ | be a finitely-generated free $ A $- | ||
+ | module. Given two bases $ b = ( b _ {1} \dots b _ {k} ) $ | ||
+ | and $ c = ( c _ {1} \dots c _ {k} ) $ | ||
+ | of $ F $, | ||
+ | if $ c _ {i} = \sum _ {j=} 1 ^ {k} a _ {ij} b _ {j} $, | ||
+ | then the matrix $ \| a _ {ij} \| $ | ||
+ | is invertible and, hence, defines an element of the group $ \overline{K}\; _ {1} A $, | ||
+ | denoted by $ [ c / b ] $. | ||
+ | If $ [ c/b ] = 0 $, | ||
+ | the bases $ b $ | ||
+ | and $ c $ | ||
+ | are said to be equivalent. It is clear that | ||
− | + | $$ | |
+ | [ e/c ] + [ c/b ] = \ | ||
+ | [ e/b ] ,\ [ b/b ] = 0 . | ||
+ | $$ | ||
− | + | For any exact sequence $ 0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $ | |
+ | of free $ A $- | ||
+ | modules and bases $ e $ | ||
+ | of $ E $ | ||
+ | and $ g $ | ||
+ | of $ G $ | ||
+ | one can define a basis $ eg = ( e, f ) $ | ||
+ | of $ F $, | ||
+ | where the images of the elements $ f $ | ||
+ | form the basis $ g $. | ||
+ | The equivalence class of this basis depends only on those of $ e $ | ||
+ | and $ g $. | ||
+ | Now let | ||
− | + | $$ | |
+ | C : C _ {n} \mathop \rightarrow \limits ^ \partial C _ {n-} 1 \ | ||
+ | \mathop \rightarrow \limits ^ \partial \dots \mathop \rightarrow \limits ^ \partial C _ {0} $$ | ||
− | + | be a complex of free $ A $- | |
+ | modules $ C _ {i} $ | ||
+ | with chosen bases $ c _ {i} $, | ||
+ | whose homology complex is free, with a chosen basis $ h _ {i} $. | ||
+ | Let the images of the homomorphisms $ \partial : C _ {i+} 1 \rightarrow C _ {i} $ | ||
+ | again be free, with basis $ b _ {i} $. | ||
+ | The combinations $ b _ {i} h _ {i} b _ {i-} 1 $ | ||
+ | define a new basis in $ C _ {i} $. | ||
+ | Then the torsion of the complex $ C $ | ||
+ | is given by the formula | ||
− | + | $$ | |
+ | \tau ( C) = - \sum _ { i= } 0 ^ { n } (- 1) ^ {i} | ||
+ | [ c _ {i} / b _ {i} h _ {i} b _ {i-} 1 ] \in \overline{K}\; _ {1} A. | ||
+ | $$ | ||
− | + | This torsion does not depend on the choice of the bases $ b _ {i} $ | |
+ | for the boundary groups but only on $ c _ {i} $ | ||
+ | and $ h _ {i} $. | ||
− | + | Given a pair $ ( K , L) $ | |
+ | consisting of a finite connected complex $ K $ | ||
+ | and a subcomplex $ L $ | ||
+ | which is a [[Deformation retract|deformation retract]] of $ K $, | ||
+ | one puts $ \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $. | ||
+ | If $ \widetilde{K} $ | ||
+ | and $ \widetilde{L} $ | ||
+ | are the universal covering complexes for $ K $ | ||
+ | and $ L $, | ||
+ | then $ \sigma \in \Pi $ | ||
+ | defines a chain mapping $ \sigma : ( \widetilde{k} , \widetilde{i} ) \rightarrow ( \widetilde{K} , \widetilde{L} ) $ | ||
+ | and hence a mapping of chain groups $ \sigma _ {*} : C ( \widetilde{K} , \widetilde{L} ) \rightarrow C ( \widetilde{K} , \widetilde{L} ) $, | ||
+ | i.e. $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $ | ||
+ | is a $ \mathbf Z [ \Pi ] $- | ||
+ | module. One thus obtains a free chain complex | ||
− | + | $$ | |
+ | C _ {n} ( \widetilde{K} , \widetilde{L} ) \rightarrow C _ {n-} 1 | ||
+ | ( \widetilde{K} , \widetilde{L} ) \rightarrow \dots \rightarrow C _ {0} ( \widetilde{K} , \widetilde{L} ) | ||
+ | $$ | ||
− | + | over $ \mathbf Z [ \Pi ] $. | |
+ | The homology of this complex is trivial, i.e. $ \widetilde{L} $ | ||
+ | is a deformation retract of $ \widetilde{K} $. | ||
− | Let | + | Let $ e _ {1} \dots e _ \alpha $ |
+ | be $ p $- | ||
+ | chains in $ K \setminus L $. | ||
+ | For each chain $ e _ {i} $ | ||
+ | one chooses a representative $ \widetilde{e} _ {i} $ | ||
+ | in $ \widetilde{K} $ | ||
+ | lying above $ e _ {i} $ | ||
+ | and fixes its orientation. Then $ c _ {p} = ( \widetilde{e} _ {1} \dots \widetilde{e} _ \alpha ) $ | ||
+ | is a basis in $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $; | ||
+ | hence there is defined a subset $ \tau C ( \widetilde{K} , \widetilde{L} ) $ | ||
+ | of $ \widetilde{K} _ {1} \mathbf Z [ \Pi ] $, | ||
+ | called the torsion. In general it depends on the choice of the bases $ c _ {p} $. | ||
+ | However, the image of this set in the Whitehead group $ \mathop{\rm Wh} ( \Pi ) $ | ||
+ | consists of a single element $ \tau ( K, L) $, | ||
+ | called the Whitehead torsion of the pair $ ( K , L) $. | ||
+ | |||
+ | An important property of the Whitehead torsion is its combinatorial invariance. Whether $ \tau ( K, L) $ | ||
+ | is a topological invariant is not known (1984). | ||
+ | |||
+ | Let $ f: X \rightarrow Y $ | ||
+ | be a homotopy equivalence ( $ X, Y $ | ||
+ | chain complexes). Then the torsion of the mapping $ f $ | ||
+ | is defined as $ \tau ( f ) = f _ {*} \tau ( M _ {f} , X) \in \mathop{\rm Wh} ( \pi _ {1} Y) $, | ||
+ | where $ M _ {f} $ | ||
+ | is the mapping cylinder of $ f $. | ||
+ | If $ \tau ( f ) = 0 $, | ||
+ | then $ f $ | ||
+ | is called a simple homotopy equivalence. Properties of the torsion $ \tau ( f ) $ | ||
+ | are: 1) if $ i : L \rightarrow K $ | ||
+ | is an inclusion, then $ \tau ( i) = \tau ( K , L) $; | ||
+ | 2) $ \tau ( g \circ f ) = \tau ( g) + g _ {*} \tau ( f ) $; | ||
+ | 3) if $ f $ | ||
+ | is homotopic to $ f ^ { \prime } $, | ||
+ | then $ \tau ( f ) = \tau ( f ^ { \prime } ) $; | ||
+ | 4) if $ I $ | ||
+ | is the identity mapping of a simply-connected complex with Euler characteristic $ \chi $, | ||
+ | then $ \tau ( I \times f ) = \chi \cdot \tau ( f ) $. | ||
====References==== | ====References==== | ||
Line 29: | Line 138: | ||
====Comments==== | ====Comments==== | ||
− | The topological invariance of | + | The topological invariance of $ \tau ( K, L) $ |
+ | is treated in [[#References|[a1]]]–[[#References|[a3]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.A. Chapman, "Topological invariance of Whitehead torsion" ''Amer. J. Math.'' , '''96''' (1974) pp. 488–497</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" ''Ann. of Math.'' , '''106''' (1977) pp. 101–119</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" ''Ann. of Math.'' , '''106''' (1977) pp. 1–18</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.A. Chapman, "Topological invariance of Whitehead torsion" ''Amer. J. Math.'' , '''96''' (1974) pp. 488–497</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" ''Ann. of Math.'' , '''106''' (1977) pp. 101–119</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" ''Ann. of Math.'' , '''106''' (1977) pp. 1–18</TD></TR></table> |
Revision as of 08:29, 6 June 2020
An element of the reduced Whitehead group $ \overline{K}\; _ {1} A $,
constructed from a complex of $ A $-
modules. In particular, one has the Whitehead torsion of a mapping complex. Let $ A $
be a ring and let $ F $
be a finitely-generated free $ A $-
module. Given two bases $ b = ( b _ {1} \dots b _ {k} ) $
and $ c = ( c _ {1} \dots c _ {k} ) $
of $ F $,
if $ c _ {i} = \sum _ {j=} 1 ^ {k} a _ {ij} b _ {j} $,
then the matrix $ \| a _ {ij} \| $
is invertible and, hence, defines an element of the group $ \overline{K}\; _ {1} A $,
denoted by $ [ c / b ] $.
If $ [ c/b ] = 0 $,
the bases $ b $
and $ c $
are said to be equivalent. It is clear that
$$ [ e/c ] + [ c/b ] = \ [ e/b ] ,\ [ b/b ] = 0 . $$
For any exact sequence $ 0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $ of free $ A $- modules and bases $ e $ of $ E $ and $ g $ of $ G $ one can define a basis $ eg = ( e, f ) $ of $ F $, where the images of the elements $ f $ form the basis $ g $. The equivalence class of this basis depends only on those of $ e $ and $ g $. Now let
$$ C : C _ {n} \mathop \rightarrow \limits ^ \partial C _ {n-} 1 \ \mathop \rightarrow \limits ^ \partial \dots \mathop \rightarrow \limits ^ \partial C _ {0} $$
be a complex of free $ A $- modules $ C _ {i} $ with chosen bases $ c _ {i} $, whose homology complex is free, with a chosen basis $ h _ {i} $. Let the images of the homomorphisms $ \partial : C _ {i+} 1 \rightarrow C _ {i} $ again be free, with basis $ b _ {i} $. The combinations $ b _ {i} h _ {i} b _ {i-} 1 $ define a new basis in $ C _ {i} $. Then the torsion of the complex $ C $ is given by the formula
$$ \tau ( C) = - \sum _ { i= } 0 ^ { n } (- 1) ^ {i} [ c _ {i} / b _ {i} h _ {i} b _ {i-} 1 ] \in \overline{K}\; _ {1} A. $$
This torsion does not depend on the choice of the bases $ b _ {i} $ for the boundary groups but only on $ c _ {i} $ and $ h _ {i} $.
Given a pair $ ( K , L) $ consisting of a finite connected complex $ K $ and a subcomplex $ L $ which is a deformation retract of $ K $, one puts $ \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $. If $ \widetilde{K} $ and $ \widetilde{L} $ are the universal covering complexes for $ K $ and $ L $, then $ \sigma \in \Pi $ defines a chain mapping $ \sigma : ( \widetilde{k} , \widetilde{i} ) \rightarrow ( \widetilde{K} , \widetilde{L} ) $ and hence a mapping of chain groups $ \sigma _ {*} : C ( \widetilde{K} , \widetilde{L} ) \rightarrow C ( \widetilde{K} , \widetilde{L} ) $, i.e. $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $ is a $ \mathbf Z [ \Pi ] $- module. One thus obtains a free chain complex
$$ C _ {n} ( \widetilde{K} , \widetilde{L} ) \rightarrow C _ {n-} 1 ( \widetilde{K} , \widetilde{L} ) \rightarrow \dots \rightarrow C _ {0} ( \widetilde{K} , \widetilde{L} ) $$
over $ \mathbf Z [ \Pi ] $. The homology of this complex is trivial, i.e. $ \widetilde{L} $ is a deformation retract of $ \widetilde{K} $.
Let $ e _ {1} \dots e _ \alpha $ be $ p $- chains in $ K \setminus L $. For each chain $ e _ {i} $ one chooses a representative $ \widetilde{e} _ {i} $ in $ \widetilde{K} $ lying above $ e _ {i} $ and fixes its orientation. Then $ c _ {p} = ( \widetilde{e} _ {1} \dots \widetilde{e} _ \alpha ) $ is a basis in $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $; hence there is defined a subset $ \tau C ( \widetilde{K} , \widetilde{L} ) $ of $ \widetilde{K} _ {1} \mathbf Z [ \Pi ] $, called the torsion. In general it depends on the choice of the bases $ c _ {p} $. However, the image of this set in the Whitehead group $ \mathop{\rm Wh} ( \Pi ) $ consists of a single element $ \tau ( K, L) $, called the Whitehead torsion of the pair $ ( K , L) $.
An important property of the Whitehead torsion is its combinatorial invariance. Whether $ \tau ( K, L) $ is a topological invariant is not known (1984).
Let $ f: X \rightarrow Y $ be a homotopy equivalence ( $ X, Y $ chain complexes). Then the torsion of the mapping $ f $ is defined as $ \tau ( f ) = f _ {*} \tau ( M _ {f} , X) \in \mathop{\rm Wh} ( \pi _ {1} Y) $, where $ M _ {f} $ is the mapping cylinder of $ f $. If $ \tau ( f ) = 0 $, then $ f $ is called a simple homotopy equivalence. Properties of the torsion $ \tau ( f ) $ are: 1) if $ i : L \rightarrow K $ is an inclusion, then $ \tau ( i) = \tau ( K , L) $; 2) $ \tau ( g \circ f ) = \tau ( g) + g _ {*} \tau ( f ) $; 3) if $ f $ is homotopic to $ f ^ { \prime } $, then $ \tau ( f ) = \tau ( f ^ { \prime } ) $; 4) if $ I $ is the identity mapping of a simply-connected complex with Euler characteristic $ \chi $, then $ \tau ( I \times f ) = \chi \cdot \tau ( f ) $.
References
[1] | J.H.C. Whitehead, "Simple homotopy types" Amer. Math. J. , 72 (1950) pp. 1–57 |
[2] | J.W. Milnor, "Whitehead torsion" Bull. Amer. Math. Soc. , 72 (1966) pp. 358–426 |
Comments
The topological invariance of $ \tau ( K, L) $ is treated in [a1]–[a3].
References
[a1] | T.A. Chapman, "Topological invariance of Whitehead torsion" Amer. J. Math. , 96 (1974) pp. 488–497 |
[a2] | S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" Ann. of Math. , 106 (1977) pp. 101–119 |
[a3] | J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" Ann. of Math. , 106 (1977) pp. 1–18 |
Whitehead torsion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_torsion&oldid=49211