Namespaces
Variants
Actions

Difference between revisions of "Weingarten derivational formulas"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Formulas yielding the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of this surface. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976201.png" /> be the position vector of the surface, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976202.png" /> be the unit normal vector and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976203.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976204.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976206.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976207.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976208.png" /> be the coefficients of the first and second fundamental forms of the surface, respectively; the Weingarten derivational formulas will then take the form
+
<!--
 +
w0976201.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/W097/W.0907620 Weingarten derivational formulas
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w0976209.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097620/w09762010.png" /></td> </tr></table>
+
Formulas yielding the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of this surface. Let  $  \mathbf r = {\mathbf r } ( u, v) $
 +
be the position vector of the surface, let  $  \mathbf n $
 +
be the unit normal vector and let  $  E $,
 +
$  F $,
 +
$  G $,
 +
$  L $,
 +
$  M $,
 +
$  N $
 +
be the coefficients of the first and second fundamental forms of the surface, respectively; the Weingarten derivational formulas will then take the form
 +
 
 +
$$
 +
\mathbf n _ {u}  =
 +
\frac{FM- GL }{EG - F ^ { 2 } }
 +
 
 +
\mathbf r _ {u} + FL-
 +
\frac{EM}{EG- F ^ { 2 } }
 +
\mathbf r _ {v} ,
 +
$$
 +
 
 +
$$
 +
\mathbf n _ {v}  = FN-
 +
\frac{GM}{EG- F ^ { 2 } }
 +
\mathbf r _ {u} + FM-
 +
\frac{EN}{EG- F ^ { 2 } }
 +
\mathbf r _ {v} .
 +
$$
  
 
The formulas were established in 1861 by J. Weingarten.
 
The formulas were established in 1861 by J. Weingarten.
Line 9: Line 42:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.K. Rashevskii,  "A course of differential geometry" , Moscow  (1956)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.K. Rashevskii,  "A course of differential geometry" , Moscow  (1956)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.J. Hicks,  "Notes on differential geometry" , v. Nostrand  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.J. Hicks,  "Notes on differential geometry" , v. Nostrand  (1965)</TD></TR></table>

Latest revision as of 08:29, 6 June 2020


Formulas yielding the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of this surface. Let $ \mathbf r = {\mathbf r } ( u, v) $ be the position vector of the surface, let $ \mathbf n $ be the unit normal vector and let $ E $, $ F $, $ G $, $ L $, $ M $, $ N $ be the coefficients of the first and second fundamental forms of the surface, respectively; the Weingarten derivational formulas will then take the form

$$ \mathbf n _ {u} = \frac{FM- GL }{EG - F ^ { 2 } } \mathbf r _ {u} + FL- \frac{EM}{EG- F ^ { 2 } } \mathbf r _ {v} , $$

$$ \mathbf n _ {v} = FN- \frac{GM}{EG- F ^ { 2 } } \mathbf r _ {u} + FM- \frac{EN}{EG- F ^ { 2 } } \mathbf r _ {v} . $$

The formulas were established in 1861 by J. Weingarten.

References

[1] P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)

Comments

References

[a1] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)
[a2] N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)
How to Cite This Entry:
Weingarten derivational formulas. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weingarten_derivational_formulas&oldid=49201
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article