|
|
Line 1: |
Line 1: |
− | A finite-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975601.png" /> carrying a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975602.png" /> of a [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975603.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975604.png" /> and satisfying the following condition: there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975605.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975606.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975607.png" />,
| + | <!-- |
| + | w0975601.png |
| + | $#A+1 = 25 n = 0 |
| + | $#C+1 = 25 : ~/encyclopedia/old_files/data/W097/W.0907560 Weight space |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975608.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | for some positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975609.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756010.png" /> is called the weight. The tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756011.png" /> of two representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756013.png" /> with weight spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756014.png" /> which have weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756016.png" />, respectively, is the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756017.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756018.png" />, which is also a weight space and has the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756019.png" />. On passing from the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756020.png" /> to the contragredient representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756021.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756022.png" /> is replaced by the adjoint space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756024.png" /> is replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756025.png" />.
| + | A finite-dimensional space $ V $ |
| + | carrying a representation $ \rho $ |
| + | of a [[Lie algebra|Lie algebra]] $ L $ |
| + | over a field $ F $ |
| + | and satisfying the following condition: there exists a function $ \alpha : L \rightarrow F $ |
| + | such that for any $ x \in V $, |
| + | $ l \in L $, |
| | | |
| + | $$ |
| + | ( l ^ \rho - \alpha ( l) 1) ^ {k} x = 0 |
| + | $$ |
| | | |
| + | for some positive integer $ k $. |
| + | The function $ \alpha $ |
| + | is called the weight. The tensor product $ \rho _ {1} \otimes \rho _ {2} $ |
| + | of two representations $ \rho _ {1} , \rho _ {2} $ |
| + | of $ L $ |
| + | with weight spaces $ V _ {1} , V _ {2} $ |
| + | which have weights $ \alpha _ {1} $ |
| + | and $ \alpha _ {2} $, |
| + | respectively, is the representation of $ L $ |
| + | in the space $ V _ {1} \otimes V _ {2} $, |
| + | which is also a weight space and has the weight $ \alpha _ {1} + \alpha _ {2} $. |
| + | On passing from the representation $ \rho $ |
| + | to the contragredient representation $ \rho ^ {*} $, |
| + | the space $ V $ |
| + | is replaced by the adjoint space $ V ^ {*} $, |
| + | and $ \alpha $ |
| + | is replaced by $ - \alpha $. |
| | | |
| ====Comments==== | | ====Comments==== |
| See also [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]. | | See also [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]. |
A finite-dimensional space $ V $
carrying a representation $ \rho $
of a Lie algebra $ L $
over a field $ F $
and satisfying the following condition: there exists a function $ \alpha : L \rightarrow F $
such that for any $ x \in V $,
$ l \in L $,
$$
( l ^ \rho - \alpha ( l) 1) ^ {k} x = 0
$$
for some positive integer $ k $.
The function $ \alpha $
is called the weight. The tensor product $ \rho _ {1} \otimes \rho _ {2} $
of two representations $ \rho _ {1} , \rho _ {2} $
of $ L $
with weight spaces $ V _ {1} , V _ {2} $
which have weights $ \alpha _ {1} $
and $ \alpha _ {2} $,
respectively, is the representation of $ L $
in the space $ V _ {1} \otimes V _ {2} $,
which is also a weight space and has the weight $ \alpha _ {1} + \alpha _ {2} $.
On passing from the representation $ \rho $
to the contragredient representation $ \rho ^ {*} $,
the space $ V $
is replaced by the adjoint space $ V ^ {*} $,
and $ \alpha $
is replaced by $ - \alpha $.
See also Weight of a representation of a Lie algebra.