Namespaces
Variants
Actions

Difference between revisions of "Weight space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A finite-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975601.png" /> carrying a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975602.png" /> of a [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975603.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975604.png" /> and satisfying the following condition: there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975605.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975606.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975607.png" />,
+
<!--
 +
w0975601.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/W097/W.0907560 Weight space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975608.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for some positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w0975609.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756010.png" /> is called the weight. The tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756011.png" /> of two representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756013.png" /> with weight spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756014.png" /> which have weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756016.png" />, respectively, is the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756017.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756018.png" />, which is also a weight space and has the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756019.png" />. On passing from the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756020.png" /> to the contragredient representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756021.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756022.png" /> is replaced by the adjoint space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756024.png" /> is replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097560/w09756025.png" />.
+
A finite-dimensional space  $  V $
 +
carrying a representation $  \rho $
 +
of a [[Lie algebra|Lie algebra]]  $  L $
 +
over a field  $  F $
 +
and satisfying the following condition: there exists a function  $  \alpha : L \rightarrow F $
 +
such that for any  $  x \in V $,  
 +
$  l \in L $,
  
 +
$$
 +
( l  ^  \rho  - \alpha ( l) 1)  ^ {k} x  =  0
 +
$$
  
 +
for some positive integer  $  k $.
 +
The function  $  \alpha $
 +
is called the weight. The tensor product  $  \rho _ {1} \otimes \rho _ {2} $
 +
of two representations  $  \rho _ {1} , \rho _ {2} $
 +
of  $  L $
 +
with weight spaces  $  V _ {1} , V _ {2} $
 +
which have weights  $  \alpha _ {1} $
 +
and  $  \alpha _ {2} $,
 +
respectively, is the representation of  $  L $
 +
in the space  $  V _ {1} \otimes V _ {2} $,
 +
which is also a weight space and has the weight  $  \alpha _ {1} + \alpha _ {2} $.
 +
On passing from the representation  $  \rho $
 +
to the contragredient representation  $  \rho  ^ {*} $,
 +
the space  $  V $
 +
is replaced by the adjoint space  $  V  ^ {*} $,
 +
and  $  \alpha $
 +
is replaced by  $  - \alpha $.
  
 
====Comments====
 
====Comments====
 
See also [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]].
 
See also [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]].

Latest revision as of 08:29, 6 June 2020


A finite-dimensional space $ V $ carrying a representation $ \rho $ of a Lie algebra $ L $ over a field $ F $ and satisfying the following condition: there exists a function $ \alpha : L \rightarrow F $ such that for any $ x \in V $, $ l \in L $,

$$ ( l ^ \rho - \alpha ( l) 1) ^ {k} x = 0 $$

for some positive integer $ k $. The function $ \alpha $ is called the weight. The tensor product $ \rho _ {1} \otimes \rho _ {2} $ of two representations $ \rho _ {1} , \rho _ {2} $ of $ L $ with weight spaces $ V _ {1} , V _ {2} $ which have weights $ \alpha _ {1} $ and $ \alpha _ {2} $, respectively, is the representation of $ L $ in the space $ V _ {1} \otimes V _ {2} $, which is also a weight space and has the weight $ \alpha _ {1} + \alpha _ {2} $. On passing from the representation $ \rho $ to the contragredient representation $ \rho ^ {*} $, the space $ V $ is replaced by the adjoint space $ V ^ {*} $, and $ \alpha $ is replaced by $ - \alpha $.

Comments

See also Weight of a representation of a Lie algebra.

How to Cite This Entry:
Weight space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weight_space&oldid=49195
This article was adapted from an original article by E.N. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article