Namespaces
Variants
Actions

Difference between revisions of "Weight"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
w0975201.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/W097/W.0907520 Weight,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''weight function''
 
''weight function''
  
 
A functional multiplier allowing one to obtain a finite norm of a given type for a function whose norm (or semi-norm), without this multiplier, would be infinite. The concept of a weight (function) plays an important part in problems concerning the approximation of functions (in particular, on unbounded intervals), in moment problems, in the theory of imbedding of function spaces (cf. [[Weighted space|Weighted space]]), in problems concerning the extension of functions, and in the theory of differential equations.
 
A functional multiplier allowing one to obtain a finite norm of a given type for a function whose norm (or semi-norm), without this multiplier, would be infinite. The concept of a weight (function) plays an important part in problems concerning the approximation of functions (in particular, on unbounded intervals), in moment problems, in the theory of imbedding of function spaces (cf. [[Weighted space|Weighted space]]), in problems concerning the extension of functions, and in the theory of differential equations.
 
 
  
 
====Comments====
 
====Comments====
For instance, one consider on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975201.png" /> of continuous functions on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975202.png" /> the weighted square norm, [[#References|[a2]]],
+
For instance, one consider on the space $  C[ a, b] $
 +
of continuous functions on the interval $  [ a, b] $
 +
the weighted square norm, [[#References|[a2]]],
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975203.png" /></td> </tr></table>
+
$$
 +
\| f \|  = \int\limits _ { a } ^ { b }  w( x) f ^ { 2 } ( x)  dx
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975204.png" /> is a continuous function with positive values.
+
where $  w: [ a, b] \rightarrow \mathbf R $
 +
is a continuous function with positive values.
  
One says that polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975205.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975206.png" /> are orthonormal with respect to a weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975207.png" /> if, [[#References|[a2]]],
+
One says that polynomials $  P _ {j} ( x) $
 +
on $  [ a, b] $
 +
are orthonormal with respect to a weight w( x) $
 +
if, [[#References|[a2]]],
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975208.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  w( x) P _ {j} ( x) P _ {i} ( x)  dx  = \delta _ {ij} .
 +
$$
  
 
Cf. also [[Weighted average|Weighted average]] for another illustration of the idea of assigning weights (different influence, importance) to the various constituents that make up a sum, integral or other mathematical construct.
 
Cf. also [[Weighted average|Weighted average]] for another illustration of the idea of assigning weights (different influence, importance) to the various constituents that make up a sum, integral or other mathematical construct.
Line 20: Line 40:
 
Still other illustrations of the idea are weighted least squares, [[#References|[a3]]], where, for example, an approximation or estimate is sought that minimizes a weighted sum
 
Still other illustrations of the idea are weighted least squares, [[#References|[a3]]], where, for example, an approximation or estimate is sought that minimizes a weighted sum
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w0975209.png" /></td> </tr></table>
+
$$
 +
\sum _ { i= } 1 ^ { n }  w _ {i} \| \widehat{x}  - x _ {i} \|  ^ {2} ,
 +
$$
  
 
and the weighted matching problem, where one considers a weighted graph (i.e. a graph with a weight specified for each edge) and the problem is to find a matching (i.e. a set of edges no two of which share a vertex) of maximal total weight, [[#References|[a4]]].
 
and the weighted matching problem, where one considers a weighted graph (i.e. a graph with a weight specified for each edge) and the problem is to find a matching (i.e. a set of edges no two of which share a vertex) of maximal total weight, [[#References|[a4]]].
Line 28: Line 50:
 
In an integration formula
 
In an integration formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752010.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  w( x) f( x)  dx  = \sum _ { k= } 0 ^ { N }
 +
w _ {k} f ( x _ {k} ) + R
 +
$$
  
with prescribed weighting function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752011.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752012.png" /> are called weighting coefficients, [[#References|[a7]]].
+
with prescribed weighting function w( x) $,  
 +
the w _ {k} $
 +
are called weighting coefficients, [[#References|[a7]]].
  
 
A linear dynamical input-output system
 
A linear dynamical input-output system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752013.png" /></td> </tr></table>
+
$$
 +
\dot{x} ( t)  = A x ( t) + Bu ( t),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752014.png" /></td> </tr></table>
+
$$
 +
y( t)  = Cx( t)
 +
$$
  
 
gives rise to a relation
 
gives rise to a relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752015.png" /></td> </tr></table>
+
$$
 +
y( t)  = \int\limits _ { 0 } ^ { t }  W( t- \tau ) u( \tau )  d \tau
 +
$$
  
between input and output functions (sometimes called the black-box representation), in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752016.png" /> is called the transfer function or weighting function, [[#References|[a8]]].
+
between input and output functions (sometimes called the black-box representation), in which $  W( t) $
 +
is called the transfer function or weighting function, [[#References|[a8]]].
  
 
In optimization over a finite or infinite horizon, e.g. in the theory of optimal economic growth, one aims to maximize a future return function
 
In optimization over a finite or infinite horizon, e.g. in the theory of optimal economic growth, one aims to maximize a future return function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752017.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { t _ {0} } ^ { {t _ 1 } } e ^ {- \lambda ( t- t _ {0} ) }
 +
U( c( t))  dt ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752018.png" /> is a utility function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752019.png" /> the stream of goods available for consumption. The weighting function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752020.png" /> used here is uniquely determined by the discount factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097520/w09752021.png" />, [[#References|[a9]]].
+
where $  U $
 +
is a utility function and $  c( t) $
 +
the stream of goods available for consumption. The weighting function $  \mathop{\rm exp} ( - \lambda t) $
 +
used here is uniquely determined by the discount factor $  \lambda $,  
 +
[[#References|[a9]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.R. Rice,  "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley  (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P.J. Davis,  "Interpolation and approximation" , Dover, reprint  (1975)  pp. 49; 134</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.S. Maybeck,  "Stochastic models, estimation, and control" , '''1''' , Acad. Press  (1979)  pp. 120; 232</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C.H. Papadimitriou,  K. Steiglitz,  "Combinatorial optimization. Algorithms and complexity" , Prentice-Hall  (1982)  pp. 247ff</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  L. Ljung,  "Recursive identification"  M. Hazewinkel (ed.)  J.C. Willems (ed.) , ''Stochastic systems: the mathematics of filtering and identification'' , Reidel  (1981)  pp. 247–283; esp. 272</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.S. Maybeck,  "Stochastic models, estimation, and control" , '''III''' , Acad. Press  (1982)  pp. 242–244</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  F.B. Hildebrand,  "Introduction to numerical analysis" , Dover, reprint  (1987)  pp. 209</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  G.S.G. Beveridge,  R.S. Schechter,  "Optimization: theory and practice" , McGraw-Hill  (1970)  pp. 53</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M.D. Intrilligator,  "Mathematical optimization and economic theory" , Prentice-Hall  (1971)  pp. 407</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.R. Rice,  "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley  (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P.J. Davis,  "Interpolation and approximation" , Dover, reprint  (1975)  pp. 49; 134</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.S. Maybeck,  "Stochastic models, estimation, and control" , '''1''' , Acad. Press  (1979)  pp. 120; 232</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C.H. Papadimitriou,  K. Steiglitz,  "Combinatorial optimization. Algorithms and complexity" , Prentice-Hall  (1982)  pp. 247ff</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  L. Ljung,  "Recursive identification"  M. Hazewinkel (ed.)  J.C. Willems (ed.) , ''Stochastic systems: the mathematics of filtering and identification'' , Reidel  (1981)  pp. 247–283; esp. 272</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.S. Maybeck,  "Stochastic models, estimation, and control" , '''III''' , Acad. Press  (1982)  pp. 242–244</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  F.B. Hildebrand,  "Introduction to numerical analysis" , Dover, reprint  (1987)  pp. 209</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  G.S.G. Beveridge,  R.S. Schechter,  "Optimization: theory and practice" , McGraw-Hill  (1970)  pp. 53</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M.D. Intrilligator,  "Mathematical optimization and economic theory" , Prentice-Hall  (1971)  pp. 407</TD></TR></table>

Latest revision as of 08:29, 6 June 2020


weight function

A functional multiplier allowing one to obtain a finite norm of a given type for a function whose norm (or semi-norm), without this multiplier, would be infinite. The concept of a weight (function) plays an important part in problems concerning the approximation of functions (in particular, on unbounded intervals), in moment problems, in the theory of imbedding of function spaces (cf. Weighted space), in problems concerning the extension of functions, and in the theory of differential equations.

Comments

For instance, one consider on the space $ C[ a, b] $ of continuous functions on the interval $ [ a, b] $ the weighted square norm, [a2],

$$ \| f \| = \int\limits _ { a } ^ { b } w( x) f ^ { 2 } ( x) dx $$

where $ w: [ a, b] \rightarrow \mathbf R $ is a continuous function with positive values.

One says that polynomials $ P _ {j} ( x) $ on $ [ a, b] $ are orthonormal with respect to a weight $ w( x) $ if, [a2],

$$ \int\limits _ { a } ^ { b } w( x) P _ {j} ( x) P _ {i} ( x) dx = \delta _ {ij} . $$

Cf. also Weighted average for another illustration of the idea of assigning weights (different influence, importance) to the various constituents that make up a sum, integral or other mathematical construct.

Still other illustrations of the idea are weighted least squares, [a3], where, for example, an approximation or estimate is sought that minimizes a weighted sum

$$ \sum _ { i= } 1 ^ { n } w _ {i} \| \widehat{x} - x _ {i} \| ^ {2} , $$

and the weighted matching problem, where one considers a weighted graph (i.e. a graph with a weight specified for each edge) and the problem is to find a matching (i.e. a set of edges no two of which share a vertex) of maximal total weight, [a4].

In filtering and identification problems it is often a good idea to give more recent observations more weight than those in the far past. In this connection one speaks often of gains and gain sequences instead of weights, [a5], [a6].

In an integration formula

$$ \int\limits _ { a } ^ { b } w( x) f( x) dx = \sum _ { k= } 0 ^ { N } w _ {k} f ( x _ {k} ) + R $$

with prescribed weighting function $ w( x) $, the $ w _ {k} $ are called weighting coefficients, [a7].

A linear dynamical input-output system

$$ \dot{x} ( t) = A x ( t) + Bu ( t), $$

$$ y( t) = Cx( t) $$

gives rise to a relation

$$ y( t) = \int\limits _ { 0 } ^ { t } W( t- \tau ) u( \tau ) d \tau $$

between input and output functions (sometimes called the black-box representation), in which $ W( t) $ is called the transfer function or weighting function, [a8].

In optimization over a finite or infinite horizon, e.g. in the theory of optimal economic growth, one aims to maximize a future return function

$$ \int\limits _ { t _ {0} } ^ { {t _ 1 } } e ^ {- \lambda ( t- t _ {0} ) } U( c( t)) dt , $$

where $ U $ is a utility function and $ c( t) $ the stream of goods available for consumption. The weighting function $ \mathop{\rm exp} ( - \lambda t) $ used here is uniquely determined by the discount factor $ \lambda $, [a9].

References

[a1] J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964)
[a2] P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 49; 134
[a3] P.S. Maybeck, "Stochastic models, estimation, and control" , 1 , Acad. Press (1979) pp. 120; 232
[a4] C.H. Papadimitriou, K. Steiglitz, "Combinatorial optimization. Algorithms and complexity" , Prentice-Hall (1982) pp. 247ff
[a5] L. Ljung, "Recursive identification" M. Hazewinkel (ed.) J.C. Willems (ed.) , Stochastic systems: the mathematics of filtering and identification , Reidel (1981) pp. 247–283; esp. 272
[a6] P.S. Maybeck, "Stochastic models, estimation, and control" , III , Acad. Press (1982) pp. 242–244
[a7] F.B. Hildebrand, "Introduction to numerical analysis" , Dover, reprint (1987) pp. 209
[a8] G.S.G. Beveridge, R.S. Schechter, "Optimization: theory and practice" , McGraw-Hill (1970) pp. 53
[a9] M.D. Intrilligator, "Mathematical optimization and economic theory" , Prentice-Hall (1971) pp. 407
How to Cite This Entry:
Weight. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weight&oldid=49193
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article