Namespaces
Variants
Actions

Difference between revisions of "Weak extremum"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A minimal or maximal value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972001.png" />, attained by a functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972002.png" /> on a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972004.png" />, for which one of the following inequalities holds:
+
<!--
 +
w0972001.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/W097/W.0907200 Weak extremum
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972005.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for all comparison curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972006.png" /> situated in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972007.png" />-proximity neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972008.png" /> with respect to both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w0972009.png" /> and its derivative:
+
A minimal or maximal value  $  J ( \widetilde{y}  ) $,
 +
attained by a functional  $  J ( y) $
 +
on a curve  $  \widetilde{y}  ( x) $,
 +
$  x _ {1} \leq  x \leq  x _ {2} $,
 +
for which one of the following inequalities holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720010.png" /></td> </tr></table>
+
$$
 +
J ( \widetilde{y}  )  \leq  J ( y) \  \textrm{ or } \ \
 +
J ( \widetilde{y}  )  \geq  J ( y)
 +
$$
  
The curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720012.png" /> must satisfy the prescribed boundary conditions.
+
for all comparison curves $  y ( x) $
 +
situated in an  $  \epsilon $-
 +
proximity neighbourhood of  $  \widetilde{y}  ( x) $
 +
with respect to both  $  y $
 +
and its derivative:
  
Since the maximization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720013.png" /> is equivalent to the minimization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720014.png" />, one often speaks of a weak minimum instead of a weak extremum. The term "weak" emphasizes the fact that the comparison curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720015.png" /> satisfy the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720016.png" />-proximity condition not only on the ordinate but also on its derivative (in contrast to the case of a [[Strong extremum|strong extremum]], where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720017.png" />-proximity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720019.png" /> refer only to the former).
+
$$
 +
| y ( x) - \widetilde{y}  ( x) |  \leq  \epsilon ,\ \
 +
| y  ^ \prime ( x) - \widetilde{y}  {}  ^  \prime  ( x) | \leq  \epsilon .
 +
$$
  
By definition, a weak minimum is a [[Weak relative minimum|weak relative minimum]], since the latter gives a minimum among the members of a subset of the whole class of admissible comparison curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720020.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097200/w09720021.png" /> makes sense. However, for the sake of brevity, the term  "weak minimum"  is used for both.
+
The curves  $  \widetilde{y}  ( x) $,
 +
$  y ( x) $
 +
must satisfy the prescribed boundary conditions.
 +
 
 +
Since the maximization of  $  J ( y) $
 +
is equivalent to the minimization of  $  - J( y) $,
 +
one often speaks of a weak minimum instead of a weak extremum. The term  "weak"  emphasizes the fact that the comparison curves  $  y ( x) $
 +
satisfy the  $  \epsilon $-
 +
proximity condition not only on the ordinate but also on its derivative (in contrast to the case of a [[Strong extremum|strong extremum]], where the  $  \epsilon $-
 +
proximity of  $  y ( x) $
 +
and  $  \widetilde{y}  ( x) $
 +
refer only to the former).
 +
 
 +
By definition, a weak minimum is a [[Weak relative minimum|weak relative minimum]], since the latter gives a minimum among the members of a subset of the whole class of admissible comparison curves $  y( x) $
 +
for which $  J( y) $
 +
makes sense. However, for the sake of brevity, the term  "weak minimum"  is used for both.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Lavrent'ev,  L.A. Lyusternik,  "A course in variational calculus" , Moscow-Leningrad  (1950)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Lavrent'ev,  L.A. Lyusternik,  "A course in variational calculus" , Moscow-Leningrad  (1950)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:28, 6 June 2020


A minimal or maximal value $ J ( \widetilde{y} ) $, attained by a functional $ J ( y) $ on a curve $ \widetilde{y} ( x) $, $ x _ {1} \leq x \leq x _ {2} $, for which one of the following inequalities holds:

$$ J ( \widetilde{y} ) \leq J ( y) \ \textrm{ or } \ \ J ( \widetilde{y} ) \geq J ( y) $$

for all comparison curves $ y ( x) $ situated in an $ \epsilon $- proximity neighbourhood of $ \widetilde{y} ( x) $ with respect to both $ y $ and its derivative:

$$ | y ( x) - \widetilde{y} ( x) | \leq \epsilon ,\ \ | y ^ \prime ( x) - \widetilde{y} {} ^ \prime ( x) | \leq \epsilon . $$

The curves $ \widetilde{y} ( x) $, $ y ( x) $ must satisfy the prescribed boundary conditions.

Since the maximization of $ J ( y) $ is equivalent to the minimization of $ - J( y) $, one often speaks of a weak minimum instead of a weak extremum. The term "weak" emphasizes the fact that the comparison curves $ y ( x) $ satisfy the $ \epsilon $- proximity condition not only on the ordinate but also on its derivative (in contrast to the case of a strong extremum, where the $ \epsilon $- proximity of $ y ( x) $ and $ \widetilde{y} ( x) $ refer only to the former).

By definition, a weak minimum is a weak relative minimum, since the latter gives a minimum among the members of a subset of the whole class of admissible comparison curves $ y( x) $ for which $ J( y) $ makes sense. However, for the sake of brevity, the term "weak minimum" is used for both.

References

[1] M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian)
[2] V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian)
How to Cite This Entry:
Weak extremum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weak_extremum&oldid=49180
This article was adapted from an original article by I.B. Vapnyarskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article