Namespaces
Variants
Actions

Difference between revisions of "Wave vector"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971501.png" /> in the expression
+
<!--
 +
w0971501.png
 +
$#A+1 = 9 n = 0
 +
$#C+1 = 9 : ~/encyclopedia/old_files/data/W097/W.0907150 Wave vector
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971502.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971503.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971504.png" /> are constants and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971505.png" /> denotes time.
+
The vector  $  \mathbf k = ( k _ {1} \dots k _ {m} ) $
 +
in the expression
  
The usual physical interpretation of (*) is a plane wave of frequency <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971506.png" />, propagating in the direction of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971507.png" /> and having wave-length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971508.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971509.png" />. Many homogeneous linear equations and systems of partial differential equations (including the more important equations of mathematical physics such as the [[Maxwell equations|Maxwell equations]] and the [[Wave equation|wave equation]]) have solutions in the form (*).
+
$$ \tag{* }
 +
a   \mathop{\rm exp} \left ( i \sum _ {j = 1 } ^ { m }
 +
k _ {j} x _ {j} - i \omega t \right ) ,
 +
$$
  
 +
where  $  a $
 +
and  $  \omega $
 +
are constants and  $  t $
 +
denotes time.
  
 +
The usual physical interpretation of (*) is a plane wave of frequency  $  \omega $,
 +
propagating in the direction of the vector  $  \mathbf k $
 +
and having wave-length  $  \lambda = 2 \pi / | \mathbf k | $,
 +
where  $  | \mathbf k | = \sqrt {k _ {1}  ^ {2} + \dots + k _ {m}  ^ {2} } $.
 +
Many homogeneous linear equations and systems of partial differential equations (including the more important equations of mathematical physics such as the [[Maxwell equations|Maxwell equations]] and the [[Wave equation|wave equation]]) have solutions in the form (*).
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. John,  "Plane waves and spherical means applied to partial differential equations" , Interscience  (1955)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.M. Gel'fand,  G.E. Shilov,  "Generalized functions" , '''1. Properties and operations''' , Acad. Press  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. John,  "Plane waves and spherical means applied to partial differential equations" , Interscience  (1955)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.M. Gel'fand,  G.E. Shilov,  "Generalized functions" , '''1. Properties and operations''' , Acad. Press  (1964)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:28, 6 June 2020


The vector $ \mathbf k = ( k _ {1} \dots k _ {m} ) $ in the expression

$$ \tag{* } a \mathop{\rm exp} \left ( i \sum _ {j = 1 } ^ { m } k _ {j} x _ {j} - i \omega t \right ) , $$

where $ a $ and $ \omega $ are constants and $ t $ denotes time.

The usual physical interpretation of (*) is a plane wave of frequency $ \omega $, propagating in the direction of the vector $ \mathbf k $ and having wave-length $ \lambda = 2 \pi / | \mathbf k | $, where $ | \mathbf k | = \sqrt {k _ {1} ^ {2} + \dots + k _ {m} ^ {2} } $. Many homogeneous linear equations and systems of partial differential equations (including the more important equations of mathematical physics such as the Maxwell equations and the wave equation) have solutions in the form (*).

Comments

References

[a1] F. John, "Plane waves and spherical means applied to partial differential equations" , Interscience (1955)
[a2] I.M. Gel'fand, G.E. Shilov, "Generalized functions" , 1. Properties and operations , Acad. Press (1964) (Translated from Russian)
How to Cite This Entry:
Wave vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wave_vector&oldid=49177
This article was adapted from an original article by V.M. Babich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article