Difference between revisions of "Volterra series"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | v0968701.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/V096/V.0906870 Volterra series, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''integro-power series'' | ''integro-power series'' | ||
− | A series containing the powers of the unknown function under the integral sign. Let | + | A series containing the powers of the unknown function under the integral sign. Let $ K ( s , t _ {1} \dots t _ {k} ) $ |
+ | be a continuous function in all variables in a cube $ [ a , b ] ^ {k+} 1 $ | ||
+ | and let $ U ( s) $ | ||
+ | be an arbitrary continuous function on $ [ a , b ] $. | ||
+ | The expression | ||
− | + | $$ | |
+ | U ^ {\alpha _ {0} } ( s) | ||
+ | \int\limits _ { a } ^ { b } \dots \int\limits _ { a } ^ { b } | ||
+ | K ( s , t _ {1} \dots t _ {k} ) | ||
+ | U ^ {\alpha _ {1} } ( t _ {1} ) \dots | ||
+ | U ^ {\alpha _ {k} } ( t _ {k} ) | ||
+ | d t _ {1} \dots d t _ {k} , | ||
+ | $$ | ||
− | where | + | where $ \alpha _ {0} \dots \alpha _ {k} $ |
+ | are non-negative integers and $ \alpha _ {0} + \dots + \alpha _ {k} = m $, | ||
+ | is called a Volterra term of degree $ m $ | ||
+ | in $ U $. | ||
+ | Two Volterra terms of degree $ m $ | ||
+ | belong to the same type if they differ only in their kernels $ K $. | ||
+ | The finite sum of Volterra terms (of all types) of degree $ m $ | ||
+ | is called a Volterra form of degree $ m $ | ||
+ | in the function $ U $. | ||
+ | It is denoted by | ||
− | + | $$ | |
+ | W _ {m} \left ( \begin{array}{c} | ||
+ | s \\ | ||
+ | U | ||
+ | \end{array} | ||
+ | \right ) . | ||
+ | $$ | ||
Let | Let | ||
− | + | $$ | |
+ | | W | _ {m} \left ( \begin{array}{c} | ||
+ | s \\ | ||
+ | U | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | $$ | ||
+ | |||
+ | denote the Volterra form in which the kernel $ K $ | ||
+ | is replaced by $ | K | $, | ||
+ | and let | ||
− | + | $$ | |
+ | \widetilde{U} = \ | ||
+ | \max _ {[ a , b ] } | U ( s) | ,\ \ | ||
+ | \widetilde{W} _ {m} = \ | ||
+ | \max _ {[ a , b ] } | W | _ {m} \left ( \begin{array}{c} | ||
− | + | s \\ | |
+ | U | ||
+ | \end{array} | ||
+ | \right ) ; | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | \left | W _ {m} \left ( \begin{array}{c} | ||
+ | s \\ | ||
+ | U | ||
+ | \end{array} | ||
+ | \right ) \right | \leq \ | ||
+ | \widetilde{W} _ {m} \widetilde{U} {} ^ {m} . | ||
+ | $$ | ||
The expression | The expression | ||
− | + | $$ | |
+ | W _ {0} \left ( \begin{array}{c} | ||
+ | s \\ | ||
+ | U | ||
+ | \end{array} | ||
+ | \right ) + | ||
+ | W _ {1} \left ( \begin{array}{c} | ||
+ | s \\ | ||
+ | U | ||
+ | \end{array} | ||
+ | \right ) + | ||
+ | W _ {2} \left ( \begin{array}{c} | ||
+ | s \\ | ||
+ | U | ||
+ | \end{array} | ||
+ | \right ) + \dots | ||
+ | $$ | ||
− | is called a Volterra series. If the series of numbers | + | is called a Volterra series. If the series of numbers $ \widetilde{W} _ {0} + \widetilde{W} _ {1} \widetilde{U} + \widetilde{W} _ {2} \widetilde{U} {} ^ {2} + \dots $ |
+ | converges, then the Volterra series is called regularly convergent. In this case the Volterra series converges absolutely and uniformly, and its sum is continuous on $ [ a , b ] $. | ||
− | Analogously one introduces Volterra series in several functional arguments, and Volterra series in which | + | Analogously one introduces Volterra series in several functional arguments, and Volterra series in which $ [ a , b ] $ |
+ | is replaced by some closed bounded set in a finite-dimensional Euclidean space. Volterra series are a particular case of the more general concept of an abstract [[Power series|power series]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, "On equilibrium figures deviating slightly from ellipsoids of rotation of homogeneous fluid masses" , ''Collected Works'' , '''4''' , Moscow (1959) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Schmidt, "Zur Theorie der linearen und nichtlinearen Integralgleichungen III" ''Math. Ann.'' , '''65''' (1908) pp. 370–399</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Vainberg, V.A. Trenogin, "Theory of branching of solutions of non-linear equations" , Noordhoff (1974) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, "On equilibrium figures deviating slightly from ellipsoids of rotation of homogeneous fluid masses" , ''Collected Works'' , '''4''' , Moscow (1959) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Schmidt, "Zur Theorie der linearen und nichtlinearen Integralgleichungen III" ''Math. Ann.'' , '''65''' (1908) pp. 370–399</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Vainberg, V.A. Trenogin, "Theory of branching of solutions of non-linear equations" , Noordhoff (1974) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A non-linear input-output dynamical system with input | + | A non-linear input-output dynamical system with input $ u $ |
+ | and output $ y $ | ||
+ | gives rise to a Volterra series of the form | ||
− | + | $$ | |
+ | y( t) = \int\limits _ {- \infty } ^ { {+ } \infty } | ||
+ | h _ {1} ( \tau _ {1} ) u ( t - \tau _ {1} ) d \tau _ {1} + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } \int\limits _ {- \infty } ^ { {+ } \infty } h _ {2} ( \tau _ {1} , \tau _ {2} ) u ( t - \tau _ {1} ) u( | ||
+ | t - \tau _ {2} ) d \tau _ {1} d \tau _ {2} + \dots + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } \dots \int\limits _ {- \infty } ^ { {+ } \infty } h _ {n} ( \tau _ {1} \dots \tau _ {n} ) u( t- \tau _ {1} ) \dots u ( t - \tau _ {n} ) | ||
+ | $$ | ||
− | + | $$ | |
+ | d \tau _ {1} \dots d \tau _ {n} + \dots , | ||
+ | $$ | ||
− | in which | + | in which $ h _ {n} ( \tau _ {1} \dots \tau _ {n} ) = 0 $ |
+ | if $ \tau _ {j} < 0 $ | ||
+ | for some $ j $. | ||
+ | Such series were first introduced by V. Volterra, [[#References|[a1]]], and first applied to questions of system theory by N. Wiener, leading to Wiener integrals, [[#References|[a2]]]. Cf. [[#References|[a3]]] for an extensive discussion of Volterra series in system theory. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V. Volterra, "Theory of functionals and of integral and integro-differential equations" , Dover, reprint (1959) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Wiener, "Nonlinear problems in random theory" , M.I.T. (1958)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Schetzen, "The Volterra and Wiener theories of nonlinear systems" , Wiley (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V. Volterra, "Theory of functionals and of integral and integro-differential equations" , Dover, reprint (1959) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Wiener, "Nonlinear problems in random theory" , M.I.T. (1958)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Schetzen, "The Volterra and Wiener theories of nonlinear systems" , Wiley (1980)</TD></TR></table> |
Latest revision as of 08:28, 6 June 2020
integro-power series
A series containing the powers of the unknown function under the integral sign. Let $ K ( s , t _ {1} \dots t _ {k} ) $ be a continuous function in all variables in a cube $ [ a , b ] ^ {k+} 1 $ and let $ U ( s) $ be an arbitrary continuous function on $ [ a , b ] $. The expression
$$ U ^ {\alpha _ {0} } ( s) \int\limits _ { a } ^ { b } \dots \int\limits _ { a } ^ { b } K ( s , t _ {1} \dots t _ {k} ) U ^ {\alpha _ {1} } ( t _ {1} ) \dots U ^ {\alpha _ {k} } ( t _ {k} ) d t _ {1} \dots d t _ {k} , $$
where $ \alpha _ {0} \dots \alpha _ {k} $ are non-negative integers and $ \alpha _ {0} + \dots + \alpha _ {k} = m $, is called a Volterra term of degree $ m $ in $ U $. Two Volterra terms of degree $ m $ belong to the same type if they differ only in their kernels $ K $. The finite sum of Volterra terms (of all types) of degree $ m $ is called a Volterra form of degree $ m $ in the function $ U $. It is denoted by
$$ W _ {m} \left ( \begin{array}{c} s \\ U \end{array} \right ) . $$
Let
$$ | W | _ {m} \left ( \begin{array}{c} s \\ U \end{array} \right ) $$
denote the Volterra form in which the kernel $ K $ is replaced by $ | K | $, and let
$$ \widetilde{U} = \ \max _ {[ a , b ] } | U ( s) | ,\ \ \widetilde{W} _ {m} = \ \max _ {[ a , b ] } | W | _ {m} \left ( \begin{array}{c} s \\ U \end{array} \right ) ; $$
then
$$ \left | W _ {m} \left ( \begin{array}{c} s \\ U \end{array} \right ) \right | \leq \ \widetilde{W} _ {m} \widetilde{U} {} ^ {m} . $$
The expression
$$ W _ {0} \left ( \begin{array}{c} s \\ U \end{array} \right ) + W _ {1} \left ( \begin{array}{c} s \\ U \end{array} \right ) + W _ {2} \left ( \begin{array}{c} s \\ U \end{array} \right ) + \dots $$
is called a Volterra series. If the series of numbers $ \widetilde{W} _ {0} + \widetilde{W} _ {1} \widetilde{U} + \widetilde{W} _ {2} \widetilde{U} {} ^ {2} + \dots $ converges, then the Volterra series is called regularly convergent. In this case the Volterra series converges absolutely and uniformly, and its sum is continuous on $ [ a , b ] $.
Analogously one introduces Volterra series in several functional arguments, and Volterra series in which $ [ a , b ] $ is replaced by some closed bounded set in a finite-dimensional Euclidean space. Volterra series are a particular case of the more general concept of an abstract power series.
References
[1] | A.M. Lyapunov, "On equilibrium figures deviating slightly from ellipsoids of rotation of homogeneous fluid masses" , Collected Works , 4 , Moscow (1959) (In Russian) |
[2] | E. Schmidt, "Zur Theorie der linearen und nichtlinearen Integralgleichungen III" Math. Ann. , 65 (1908) pp. 370–399 |
[3] | M.M. Vainberg, V.A. Trenogin, "Theory of branching of solutions of non-linear equations" , Noordhoff (1974) (Translated from Russian) |
Comments
A non-linear input-output dynamical system with input $ u $ and output $ y $ gives rise to a Volterra series of the form
$$ y( t) = \int\limits _ {- \infty } ^ { {+ } \infty } h _ {1} ( \tau _ {1} ) u ( t - \tau _ {1} ) d \tau _ {1} + $$
$$ + \int\limits _ {- \infty } ^ { {+ } \infty } \int\limits _ {- \infty } ^ { {+ } \infty } h _ {2} ( \tau _ {1} , \tau _ {2} ) u ( t - \tau _ {1} ) u( t - \tau _ {2} ) d \tau _ {1} d \tau _ {2} + \dots + $$
$$ + \int\limits _ {- \infty } ^ { {+ } \infty } \dots \int\limits _ {- \infty } ^ { {+ } \infty } h _ {n} ( \tau _ {1} \dots \tau _ {n} ) u( t- \tau _ {1} ) \dots u ( t - \tau _ {n} ) $$
$$ d \tau _ {1} \dots d \tau _ {n} + \dots , $$
in which $ h _ {n} ( \tau _ {1} \dots \tau _ {n} ) = 0 $ if $ \tau _ {j} < 0 $ for some $ j $. Such series were first introduced by V. Volterra, [a1], and first applied to questions of system theory by N. Wiener, leading to Wiener integrals, [a2]. Cf. [a3] for an extensive discussion of Volterra series in system theory.
References
[a1] | V. Volterra, "Theory of functionals and of integral and integro-differential equations" , Dover, reprint (1959) (Translated from French) |
[a2] | N. Wiener, "Nonlinear problems in random theory" , M.I.T. (1958) |
[a3] | M. Schetzen, "The Volterra and Wiener theories of nonlinear systems" , Wiley (1980) |
Volterra series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Volterra_series&oldid=49159